Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the co...Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits.Large Au deposits require vast amounts of Au to migrate from the u...The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits.Large Au deposits require vast amounts of Au to migrate from the upper mantle-lower crust to the shallow crust,and high Au solubility in magma and hydrothermal fluid facilitates the formation of Au-rich magma and fluid in the crust and mantle source and efficient transport.This paper reviews recent high-pressure and high-temperature experimental studies on Au species in magmas and hydrothermal fluids,the partitioning behavior of Au between silicate melts and fluids,and the effects of temperature,pressure,oxygen fugacity,sulfur fugacity,silicate melt composition,and volatiles(H2O,CO2,chlorine,and sulfur)on the solubility of Au in magma.We show that the solubility of Au in magma is largely controlled by the volatiles in the magma:the higher the content of reduced sulfur(S2-and HS-)in the magma,the higher the solubility of Au.Under high-temperature,high-pressure,H2O-rich,and intermediate oxygen fugacity conditions,magma can dissolve more reduced sulfur species,thus enhancing the ability of the magma to transport Au.If the ore-forming elements of the Au deposits in the North China Craton originate from mantle-derived magmas and fluids,we can conclude,in terms of massive Au migration,that these deep Au-rich magmas might have been generated under H2 O-rich and moderately oxidized conditions(S2-coexists with S6+).The big mantle wedge beneath East Asia was metasomatized by melts and fluids from the dehydration of the Early Cretaceous paleo-Pacific stagnant slab,which not only caused thinning of the North China Craton,but also created physicochemical conditions favorable for massive Au migration.展开更多
Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and ...Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500℃, 8-50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows:(1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point.(2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid.展开更多
The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation ...The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation mechanism,elements such as iron and nickel should be extracted from silicate to form an iron-rich proto-core,and the residual silicate materials form the proto-mantle.However,the composition of the lower mantle and the core remains controversial,which largely affects the partition of elements,thus the referred differentiation process of the Earth.In recent years,many experimental studies on the partition coefficient of siderophile elements between metal and silicate under high-temperature and high-pressure conditions have put forward new ideas on the issues around Earth’s core-mantle differentiation.Meanwhile,some researchers suggested that the redox state of the Earth’s mantle changes during its formation and evolution,and many isotope geochemistry studies support that some enstatite chondrites have a common nebular precursor as the Earth.These new studies bring dispute on the Earth’s building materials,which dominates the core-mantle differentiation process and largely affects the partitioning behaviors of elements during the core-mantle differentiation.This chapter aims to review recent experimental studies on the siderophile element geochemistry and discussions on the Earth’s building blocks.展开更多
文摘Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金Project of China(Grant No.2016YFC0600104),the National Natural Science Foundation of China(Grant No.41573053)the Youth Innovation Promotion Association CAS(Grant No.2019344)。
文摘The solubility of Au in silicate melts and fluids governs the enrichment and migration of Au during the formation of magmatic-hydrothermal Au deposits.Large Au deposits require vast amounts of Au to migrate from the upper mantle-lower crust to the shallow crust,and high Au solubility in magma and hydrothermal fluid facilitates the formation of Au-rich magma and fluid in the crust and mantle source and efficient transport.This paper reviews recent high-pressure and high-temperature experimental studies on Au species in magmas and hydrothermal fluids,the partitioning behavior of Au between silicate melts and fluids,and the effects of temperature,pressure,oxygen fugacity,sulfur fugacity,silicate melt composition,and volatiles(H2O,CO2,chlorine,and sulfur)on the solubility of Au in magma.We show that the solubility of Au in magma is largely controlled by the volatiles in the magma:the higher the content of reduced sulfur(S2-and HS-)in the magma,the higher the solubility of Au.Under high-temperature,high-pressure,H2O-rich,and intermediate oxygen fugacity conditions,magma can dissolve more reduced sulfur species,thus enhancing the ability of the magma to transport Au.If the ore-forming elements of the Au deposits in the North China Craton originate from mantle-derived magmas and fluids,we can conclude,in terms of massive Au migration,that these deep Au-rich magmas might have been generated under H2 O-rich and moderately oxidized conditions(S2-coexists with S6+).The big mantle wedge beneath East Asia was metasomatized by melts and fluids from the dehydration of the Early Cretaceous paleo-Pacific stagnant slab,which not only caused thinning of the North China Craton,but also created physicochemical conditions favorable for massive Au migration.
基金financed by the Fund from the Ministry of Science and Technology of People’s Republic of China under the grant number XDB18000000Major State Research Development Program of China under Grant Nos.2016YFC0601101 and 2016YFC0600109
文摘Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500℃, 8-50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows:(1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point.(2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid.
基金financially supported by the National Natural Science Foundation of China(NSFC Nos.41773052 and 41973058)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB 41000000)+1 种基金the key research program of frontier sciences of Chinese Academy of Sciences(ZDBS-SSWJSC007-10)preresearch project on Civil Aerospace Technologies by CNSA(D020201)。
文摘The core-mantle differentiation process is one of the most significant events in the Earth’s early history,which profoundly affects the Earth’s internal structure.According to the simple core-mantle differentiation mechanism,elements such as iron and nickel should be extracted from silicate to form an iron-rich proto-core,and the residual silicate materials form the proto-mantle.However,the composition of the lower mantle and the core remains controversial,which largely affects the partition of elements,thus the referred differentiation process of the Earth.In recent years,many experimental studies on the partition coefficient of siderophile elements between metal and silicate under high-temperature and high-pressure conditions have put forward new ideas on the issues around Earth’s core-mantle differentiation.Meanwhile,some researchers suggested that the redox state of the Earth’s mantle changes during its formation and evolution,and many isotope geochemistry studies support that some enstatite chondrites have a common nebular precursor as the Earth.These new studies bring dispute on the Earth’s building materials,which dominates the core-mantle differentiation process and largely affects the partitioning behaviors of elements during the core-mantle differentiation.This chapter aims to review recent experimental studies on the siderophile element geochemistry and discussions on the Earth’s building blocks.