Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p...The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.展开更多
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi...Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.展开更多
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive...Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testin...Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testing techniques.The experimental results indicate that sample A3(bauxite/kaolin ratio of 5:5)sintered at 1620℃has the optimum comprehensive properties,with bulk density of 2.83 g·cm^(-3)and bending strength of 155.44 MPa.After 30 thermal shocks(1000℃-room temperature,air cooling),the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%,the corresponding thermal conductivity and specific heat capacity are 3.54 W·(m·K)^(-1)and 1.39 kJ·(kg·K)^(-1)at 800℃,and the thermal storage density is 1096 kJ·kg^(-1)(25-800 mullite ceramics;sintering properties;high-temperature thermal storage;thermal shock resistance).Mullite forms a dense and continuous interlaced network microstructure,which endows the samples high thermal storage density and high bending strength,but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content,which reduces the properties of the samples.展开更多
In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators we...In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators were measured,and a graded scale was developed as the salt damage index(SDI) according to different damage symptoms in leaves.The results showed SDI increased gradually,and average number and length of new shoot decreased significantly.Three antioxidant enzymes(superoxide dismutase,peroxidase and catalase) and two osmotic adjustment substances(soluble sugar and proline) showed different changes in old and new leaves of four genotypes.SPAD values exhibited a decreased trend in the whole except in the new leaves of Acva-2.Malonaldehyde contents increased and root activity decreased with the increasing salt concentrations.Principal component analysis was used to assess the salt tolerance,and the results showed Acva-3,from Actinidia valvata Dunn.,had the strongest tolerance to salt,and could be a potential resistant resource to the salt-tolerance dedicated rootstock breeding of kiwifruit.展开更多
The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal ...The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.展开更多
In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unb...In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.展开更多
Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) an...Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ...Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.展开更多
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ...The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.展开更多
The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce...The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.展开更多
Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reac...Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.展开更多
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
基金the Strategic Pilot Technology Chinese Academy of Sciences(No.XDA02010500).
文摘The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.
基金Supported by the National Natural Science Foundation of China(52288101).
文摘Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.
基金Funded by the National Natural Science Foundation of China(No.50678050)
文摘Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
基金Funded by the National Key Research and Development Program of Science and Technology of China(No.2018YFB1501002)。
文摘Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testing techniques.The experimental results indicate that sample A3(bauxite/kaolin ratio of 5:5)sintered at 1620℃has the optimum comprehensive properties,with bulk density of 2.83 g·cm^(-3)and bending strength of 155.44 MPa.After 30 thermal shocks(1000℃-room temperature,air cooling),the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%,the corresponding thermal conductivity and specific heat capacity are 3.54 W·(m·K)^(-1)and 1.39 kJ·(kg·K)^(-1)at 800℃,and the thermal storage density is 1096 kJ·kg^(-1)(25-800 mullite ceramics;sintering properties;high-temperature thermal storage;thermal shock resistance).Mullite forms a dense and continuous interlaced network microstructure,which endows the samples high thermal storage density and high bending strength,but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content,which reduces the properties of the samples.
基金the fundings from the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences (CAAS-ASTIP2016-ZFRI)the Central Public-Interest Scientific Institution Basal Research Fund,Zhengzhou Fruit Research Institute,CAAS (1610192017708)the Modern Agricultural Industry Technology of Henan Province,China (S2014-11)
文摘In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators were measured,and a graded scale was developed as the salt damage index(SDI) according to different damage symptoms in leaves.The results showed SDI increased gradually,and average number and length of new shoot decreased significantly.Three antioxidant enzymes(superoxide dismutase,peroxidase and catalase) and two osmotic adjustment substances(soluble sugar and proline) showed different changes in old and new leaves of four genotypes.SPAD values exhibited a decreased trend in the whole except in the new leaves of Acva-2.Malonaldehyde contents increased and root activity decreased with the increasing salt concentrations.Principal component analysis was used to assess the salt tolerance,and the results showed Acva-3,from Actinidia valvata Dunn.,had the strongest tolerance to salt,and could be a potential resistant resource to the salt-tolerance dedicated rootstock breeding of kiwifruit.
基金supported by the National Natural Science Foundation of China(31371680)the Beijing Food Crops Innovation Consortium Program,China(BAIC092016)the earmarked fund for the China Agriculture Research System(CARS-11)
文摘The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
基金Sponsored by the Changjiang Scholars Program of China(Grant No.2009-37)the National Natural Science Foundation of China(Grant No.50678050)
文摘In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.
文摘Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Enterprise Research and Development Project of Beijing Lirr High-Temperature Materials Co.,Ltd.(2020-02)Key Scientific Research Project for Universities and Colleges in Henan Province(19A430028)+1 种基金the Excellent Youth Research Project of Anhui Province(2022AH030135)the PhD Research Funding of Suzhou University(2021BSK041).
文摘Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.
基金The National Science Foundation of China under contract No.40572142the Doctoral Foundation of the Ministry of Education of China under contract No.20040423016.
文摘The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.
文摘The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.
基金This work was supported by the Foundation of Technological Department of Shaanxi Province (No. 06JK267)Basic Research Foundation of Xi’an University of Architecture & Technology (No. JC0507)
文摘Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.