Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and develop...Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and development.In this study,osmotic regulation,antioxidant enzyme activities,and photosynthetic characteristics of tree peony in response to high-temperature stress were investigated.The results showed that high-temperature stress had destroyed the cell membrane,manifested as the increased relative electrical conductivity and malondialdehyde content.Moreover,high-temperature stress led to excessive accumulation of reactive oxygen species,thereby,activating antioxidant enzyme activities.Also,photosynthetic parameters and chlorophyll fluorescence parameters directly reflected the damage to the photosystem II reflection center under high-temperature stress.In addition,high-temperature stress led to stomatal closure and chloroplast damage.This study revealed the physiological responses of tree peony to high-temperature stress,laying a foundation for the promotion of tree peony in high-temperature areas and the improvement of high-temperature resistance.展开更多
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat...Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.展开更多
The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation seque...The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation sequence of Ti2AlNb-based alloys.At temperatures lower than the B2+O phase field (500 ℃) and higher than the B2+O phase field (1 000 ℃),the joints fracture in the base metal in ductile fracture mode.By contrast,the joints exhibit obvious high-temperature brittleness in the B2+O phase field (650 °C and 800 ℃).Heat treatments were conducted with respect to the thermal history of tensile specimens.Intergranular microcracks along the grain boundary of B2 phase are found in the fusion zone after the heat treatments at 650 ℃ and 800 ℃.The high-temperature brittleness at 650 ℃ and 800 ℃ is attributed to the B2→O transformation along the grain boundary.The stress concentration caused by the volume change of B2→O transformation also contributes to the high-temperature brittleness of laser welded Ti-22Al-25Nb joints.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
Antibiotics are widespread in various environmental media,and may pose a potential threat to aquatic ecosystems and non-target aquatic organisms.Florfenicol(FLO)is one of the most commonly used antibiotics in aquacult...Antibiotics are widespread in various environmental media,and may pose a potential threat to aquatic ecosystems and non-target aquatic organisms.Florfenicol(FLO)is one of the most commonly used antibiotics in aquaculture,and extensively used to substitute chloramphenicol with its strong sterilization and low adverse ef fect.In this study,flounder Paralichthys olivaceus,an important economic fish species in seawater was used as an experimental subject.Five exposure concentrations of FLO(including environmentrelated concentrations)were set at 0,0.01,0.1,1,and 10 mg/L.Ef fects of FLO exposure for 168 h on growth and development,motor behavior,antioxidant enzyme activity,malondialdehyde(MDA)content,and thyroid hormone level of P.olivaceus larvae were studied in pre-larvae(1 dpf)and post-larvae(20 dpf).The results show that the short-term FLO exposure could promote the larvae growth to some degrees,but inhibit them as the exposure time prolonged.For pre-larvae,FLO at 0.01 mg/L could stimulate the motor nerve system and increase the swimming ability,but inhibited it at 1 mg/L.With the increasing dosage of FLO,the superoxide dismutase(SOD)and MDA contents were elevated,reaching the maximum in the 1 mg/L FLO group.The pre-larvae were more sensitive than the post-larvae to FLO in the environment,and the growth and immune resistance could be damaged with long exposure.Post-larvae were more tolerant to external pollutants,FLO at 1 mg/L could promote the motor behavior and reduce SOD and MDA contents.Therefore,FLO can be used as an antibiotic at a proper concentration but as a drug to prevent disease in a long-term way.展开更多
Cells have intrinsic mechanisms for cleaning harmful oxidants represented mainly by reactive oxygen species (ROS). Despite the antioxidant defense, ROS can cause serious damage to the retina that with age leads to var...Cells have intrinsic mechanisms for cleaning harmful oxidants represented mainly by reactive oxygen species (ROS). Despite the antioxidant defense, ROS can cause serious damage to the retina that with age leads to various eye diseases and even blindness. Among numerous cell sites of ROS generation, mitochondrial electron transport is of crucial importance. Recently, for the purpose of cleaning ROS in the mitochondrial matrix, powerful mitochondria- targeted antioxidant “SkQ1” has been invented. We studied SkQ1 effects upon tissues of rat posterior eye cup that consisted: retinal pigment epithelium (RPE) ? choroidal coat ? scleral coat. The eye cups were isolated from the eyes of adult albino rats and cultivated in rotary tissue culture system in the presence of 20 nM SkQ1 or without this compound. After 7 days - 1 month in vitro eye cup samples were studied by immunohistochemistry, routine histology, morphometry, and digital image analysis. We have found that under chosen, “in vitro like in vivo” conditions 20 nM SkQ1 effectively reduced cell death in RPE and choroid, protected RPE from disintegration caused by cell phenotypic transformation and withdrawal from the layer, suppressed transmigration of choroidal coat cells. In the ex vivo model we used degenerative processes were more pronounced in the eye cup center where SkQ1 effect was most vivid. All this give us hopes for effectiveness of SkQ1 treatment of retinal central part that is very susceptible to light-induced over-oxidation injury and mostly suffering in many age-related diseases, AMD, in particular.展开更多
A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal si...A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal simulation,X-ray diffraction,field emission scanning electron microscopy,and electron backscattered diffraction,the effects of nanoceramic additives on high-temperature mechanical properties and corrosion behavior of the 310S steel were studied.The results indicate that the morphology and density of the(Fe,Cr)_(23)C_(6)carbides are varied,which play an important role in the high-temperature mechanical properties and corrosion behavior.After adding nano-ceramic additives,the high-temperature tensile strength and yield strength are improved simultaneously,in spite of a slight decrease in the total elongation.During high-temperature corrosion process,the mass gain of all the samples is parabolic with time.The mass gain is increased in the 310S steel with nano-ceramic additive,while the substrate thickness is significantly larger than 310S steel.The more stable and adherent FeCr_(2)O_(4)spinel form is the reason why the high-temperature corrosion resistance was increased.The(Fe,Cr)_(23)C_(6)carbides distribution along grain boundaries is detrimental to the high-temperature corrosion resistance.展开更多
Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various t...Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various techniques have been dedicated to refining grain,along with relevant studies on corrosion behavior,including general corrosion,pitting corrosion,and stress corrosion cracking.However,the funda-mental consensus on how grain size influences corrosion behavior has not been reached.This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior.Moreover,the effects of microstructural changes(i.e.,grain boundary,dislo-cation,texture,residual stress,impurities,and second phase)resulting from grain refinement on corrosion behavior are discussed.The grain re-finement not only has an impact on the corrosion performance,but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement.Grain size is not the only factor affecting the corrosion behavior of metallic ma-terials;thus,the overall influence of microstructures on corrosion behavior should be understood.展开更多
Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water conten...Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100℃ and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100℃. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.展开更多
The creep behaviors of Pt-RE alloys have been studied at 1200℃ and 1400℃.The results show that asmall amount of RE elements improves the creep behaviors of platinum greatly.The creep behaviors of PtGd0.5,PtLa0.5 and...The creep behaviors of Pt-RE alloys have been studied at 1200℃ and 1400℃.The results show that asmall amount of RE elements improves the creep behaviors of platinum greatly.The creep behaviors of PtGd0.5,PtLa0.5 and PtLa0.3 Gd0.2,are best among all the alloys studied.As far as the creep behaviors are concerned,the traditional heat-resistance alloy PtGd10 can be replaced by PtGd0.5.Particularly,the properities of PtGd0.5are near to those of PtRb10.For most of the Pt-RE alloys,long-time,static,super high-temperature treatment inair is of no advantage to the creep rupture life.The mechanisms of the effects of rare-earths on high-temperaturecreep properties of platinum are discussed.展开更多
Terminalia laxiflora Engl.&Diels.is an important indigenous and multi-purpose species in Ethiopia.However threatened due to low germination and its storage behavior is unknown.In this study,we aimed to(1)test pret...Terminalia laxiflora Engl.&Diels.is an important indigenous and multi-purpose species in Ethiopia.However threatened due to low germination and its storage behavior is unknown.In this study,we aimed to(1)test pretreatments for breaking the dormancy of T.laxiflora seed and(2)determine its storage behavior.Seeds were subjected to four pretreatments such as soaking,scarification,high-temperature,and control.Experiments were done before storage and after 2 years of dry storage at cold temperature(-10℃)based on randomized design with four replicates.The first round of experimental results showed that T.laxiflora seeds with high temperature treatments at 78℃for 10 min showed significantly higher germination percentage(80%).In the second round experiment,high-temperature treatment at 78℃for15 min,cold water soaking,high-temperature treatment at78℃for 10 min,hot water soaking,and high-temperature treatment at 78℃for 5 min showed significantly higher germination percentage from the remaining treatments(75,64,58,56,and 53%,respectively).To break the dormancy of T.laxiflora seed and attain good germination result,seeds should be pretreated with high-temperature at 78℃for 10 min to test the initial germination before storage and should be pretreated with high-temperature(at 78℃for15,10,or 5 min),soaked in cold,or hot water for 24 h to monitor the germination after storage.The two experiments show that T.laxiflora produces orthodox seed.展开更多
The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image a...The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.展开更多
Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °...Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °C in air were investigated. The oxidation kinetics of Ni-11Fe-10Cu alloy followed parabolic law at 750 °C without spallation and linear law at 950 °C with severe spallation, while that of Ni-11Fe-10Cu-6Al-3Y alloy followed parabolic law at 750 and 950 °C without spallation. The parabolic rate constant (kp) of Ni-11Fe-10Cu was smaller than that of Ni-11Fe-10Cu-6Al-3Y at 750 °C. The oxide scale formed on Ni-11Fe-10Cu at 750 °C was composed of a CuO outer layer, a NiFe2O4 middle layer and a NiO inner layer. The oxide scale formed on Ni-11Fe-10Cu-6Al-3Y at 750 °C was also composed of the similar triplex layers in addition to an internal oxidation zone containing Al, Ni and Cu oxide and the microstructure of the scale changed with increasing temperature. Although the doping Al and Y could improve the adherence of oxide scale, it could aggravate the extent of internal oxidation. Based on the combination of X-ray diffraction (XRD), scanning electron mi-croscopy/energy dispersive spectroscopy (SEM/EDX) analysis, the microstructure and growth mechanism of the multi-layer oxide scale was studied and the effect of doping Al and Y on the oxidation behavior of Ni-11Fe-10Cu alloy was also discussed.展开更多
Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbid...Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbides is highly desirable but still a big challenge.In this study,it is proposed that the hightemperature compression strength of ultra-coarse cemented carbides can be enhanced by modulating hard matrix grains by activated Ta C nanoparticles,through solid solution strengthening of Ta atoms.Based on the designed experiments and microstructural characterizations combined with finite element simulations,the grain morphology,stress distribution and dislocation configuration were studied in detail for ultra-coarse grained cemented carbides.The mechanisms of Ta dissolving in WC crystal and strengthening ultra-coarse grains through interaction with dislocations were disclosed from the atomic scale.This study opens a new perspective to modulate hard phases of cemented carbides for improving their hightemperature performance,which will be applicable to a variety of cermet and ceramic-based composite materials.展开更多
基金supported by Jiangsu Modern Agricultural Industrial Technology System(JATS[2022]489)Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(CX(22)3186)+1 种基金Policy Guidance Program of Jiangsu Province-Science and Technology Special Project of Northern Jiangsu Province(SZ-SQ2021041)the Qing Lan Project of Jiangsu Province and High-Level Talent Support Program of Yangzhou University.
文摘Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and development.In this study,osmotic regulation,antioxidant enzyme activities,and photosynthetic characteristics of tree peony in response to high-temperature stress were investigated.The results showed that high-temperature stress had destroyed the cell membrane,manifested as the increased relative electrical conductivity and malondialdehyde content.Moreover,high-temperature stress led to excessive accumulation of reactive oxygen species,thereby,activating antioxidant enzyme activities.Also,photosynthetic parameters and chlorophyll fluorescence parameters directly reflected the damage to the photosystem II reflection center under high-temperature stress.In addition,high-temperature stress led to stomatal closure and chloroplast damage.This study revealed the physiological responses of tree peony to high-temperature stress,laying a foundation for the promotion of tree peony in high-temperature areas and the improvement of high-temperature resistance.
基金supported by the National Key Research and Development Program of China(2022YFB3809005)by SINOPEC(120060-6,121027,and 122042).
文摘Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.
基金Funded by the National Natural Science Foundation of China(Nos.51804097 and 51879089)the Fundamental Research Funds for the Central Universities of China(No.B200202219)+2 种基金the Changzhou Sci&Tech Program(No.CJ20190049)the State Key Lab of Advanced Welding and JoiningHarbin Institute of Technology(No.AWJ-19M16)。
文摘The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation sequence of Ti2AlNb-based alloys.At temperatures lower than the B2+O phase field (500 ℃) and higher than the B2+O phase field (1 000 ℃),the joints fracture in the base metal in ductile fracture mode.By contrast,the joints exhibit obvious high-temperature brittleness in the B2+O phase field (650 °C and 800 ℃).Heat treatments were conducted with respect to the thermal history of tensile specimens.Intergranular microcracks along the grain boundary of B2 phase are found in the fusion zone after the heat treatments at 650 ℃ and 800 ℃.The high-temperature brittleness at 650 ℃ and 800 ℃ is attributed to the B2→O transformation along the grain boundary.The stress concentration caused by the volume change of B2→O transformation also contributes to the high-temperature brittleness of laser welded Ti-22Al-25Nb joints.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
基金Supported by the National Key R&D Program of China(No.2017YFB0404000)the Project of Liaoning Ocean and Fisheries Department(No.201731)+1 种基金the Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering Ministry of Education(No.KLIEEE-17-12)the High-level Innovation Team Overseas Training Project of Liaoning Provincial(No.201818)
文摘Antibiotics are widespread in various environmental media,and may pose a potential threat to aquatic ecosystems and non-target aquatic organisms.Florfenicol(FLO)is one of the most commonly used antibiotics in aquaculture,and extensively used to substitute chloramphenicol with its strong sterilization and low adverse ef fect.In this study,flounder Paralichthys olivaceus,an important economic fish species in seawater was used as an experimental subject.Five exposure concentrations of FLO(including environmentrelated concentrations)were set at 0,0.01,0.1,1,and 10 mg/L.Ef fects of FLO exposure for 168 h on growth and development,motor behavior,antioxidant enzyme activity,malondialdehyde(MDA)content,and thyroid hormone level of P.olivaceus larvae were studied in pre-larvae(1 dpf)and post-larvae(20 dpf).The results show that the short-term FLO exposure could promote the larvae growth to some degrees,but inhibit them as the exposure time prolonged.For pre-larvae,FLO at 0.01 mg/L could stimulate the motor nerve system and increase the swimming ability,but inhibited it at 1 mg/L.With the increasing dosage of FLO,the superoxide dismutase(SOD)and MDA contents were elevated,reaching the maximum in the 1 mg/L FLO group.The pre-larvae were more sensitive than the post-larvae to FLO in the environment,and the growth and immune resistance could be damaged with long exposure.Post-larvae were more tolerant to external pollutants,FLO at 1 mg/L could promote the motor behavior and reduce SOD and MDA contents.Therefore,FLO can be used as an antibiotic at a proper concentration but as a drug to prevent disease in a long-term way.
文摘Cells have intrinsic mechanisms for cleaning harmful oxidants represented mainly by reactive oxygen species (ROS). Despite the antioxidant defense, ROS can cause serious damage to the retina that with age leads to various eye diseases and even blindness. Among numerous cell sites of ROS generation, mitochondrial electron transport is of crucial importance. Recently, for the purpose of cleaning ROS in the mitochondrial matrix, powerful mitochondria- targeted antioxidant “SkQ1” has been invented. We studied SkQ1 effects upon tissues of rat posterior eye cup that consisted: retinal pigment epithelium (RPE) ? choroidal coat ? scleral coat. The eye cups were isolated from the eyes of adult albino rats and cultivated in rotary tissue culture system in the presence of 20 nM SkQ1 or without this compound. After 7 days - 1 month in vitro eye cup samples were studied by immunohistochemistry, routine histology, morphometry, and digital image analysis. We have found that under chosen, “in vitro like in vivo” conditions 20 nM SkQ1 effectively reduced cell death in RPE and choroid, protected RPE from disintegration caused by cell phenotypic transformation and withdrawal from the layer, suppressed transmigration of choroidal coat cells. In the ex vivo model we used degenerative processes were more pronounced in the eye cup center where SkQ1 effect was most vivid. All this give us hopes for effectiveness of SkQ1 treatment of retinal central part that is very susceptible to light-induced over-oxidation injury and mostly suffering in many age-related diseases, AMD, in particular.
基金This work was financially supported by the Key Technology Research and Development Program of Shandong(2019TSLH0103)the Fundamental Research Funds for the Central Universities(FRF-TP-19-009A1).
文摘A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal simulation,X-ray diffraction,field emission scanning electron microscopy,and electron backscattered diffraction,the effects of nanoceramic additives on high-temperature mechanical properties and corrosion behavior of the 310S steel were studied.The results indicate that the morphology and density of the(Fe,Cr)_(23)C_(6)carbides are varied,which play an important role in the high-temperature mechanical properties and corrosion behavior.After adding nano-ceramic additives,the high-temperature tensile strength and yield strength are improved simultaneously,in spite of a slight decrease in the total elongation.During high-temperature corrosion process,the mass gain of all the samples is parabolic with time.The mass gain is increased in the 310S steel with nano-ceramic additive,while the substrate thickness is significantly larger than 310S steel.The more stable and adherent FeCr_(2)O_(4)spinel form is the reason why the high-temperature corrosion resistance was increased.The(Fe,Cr)_(23)C_(6)carbides distribution along grain boundaries is detrimental to the high-temperature corrosion resistance.
基金This work was fianancially supported by the National Natural Science Foundation of China(No.51871024)the Fundamental Research Funds for the Central Universities(No.FRF-NP-20-07).
文摘Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various techniques have been dedicated to refining grain,along with relevant studies on corrosion behavior,including general corrosion,pitting corrosion,and stress corrosion cracking.However,the funda-mental consensus on how grain size influences corrosion behavior has not been reached.This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior.Moreover,the effects of microstructural changes(i.e.,grain boundary,dislo-cation,texture,residual stress,impurities,and second phase)resulting from grain refinement on corrosion behavior are discussed.The grain re-finement not only has an impact on the corrosion performance,but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement.Grain size is not the only factor affecting the corrosion behavior of metallic ma-terials;thus,the overall influence of microstructures on corrosion behavior should be understood.
基金the Knowledge Innovation Program(KIP)Pilot Project(Grant No.KZCX2-YW-414)the Botanical Garden and Systematic Biology Project of the Chinese Academy of Sciences(Grant No.KSCX2-YW-Z-058)
文摘Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100℃ and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100℃. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.
文摘The creep behaviors of Pt-RE alloys have been studied at 1200℃ and 1400℃.The results show that asmall amount of RE elements improves the creep behaviors of platinum greatly.The creep behaviors of PtGd0.5,PtLa0.5 and PtLa0.3 Gd0.2,are best among all the alloys studied.As far as the creep behaviors are concerned,the traditional heat-resistance alloy PtGd10 can be replaced by PtGd0.5.Particularly,the properities of PtGd0.5are near to those of PtRb10.For most of the Pt-RE alloys,long-time,static,super high-temperature treatment inair is of no advantage to the creep rupture life.The mechanisms of the effects of rare-earths on high-temperaturecreep properties of platinum are discussed.
基金financial and logistic facilities funded by Ethiopian Biodiversity Institute
文摘Terminalia laxiflora Engl.&Diels.is an important indigenous and multi-purpose species in Ethiopia.However threatened due to low germination and its storage behavior is unknown.In this study,we aimed to(1)test pretreatments for breaking the dormancy of T.laxiflora seed and(2)determine its storage behavior.Seeds were subjected to four pretreatments such as soaking,scarification,high-temperature,and control.Experiments were done before storage and after 2 years of dry storage at cold temperature(-10℃)based on randomized design with four replicates.The first round of experimental results showed that T.laxiflora seeds with high temperature treatments at 78℃for 10 min showed significantly higher germination percentage(80%).In the second round experiment,high-temperature treatment at 78℃for15 min,cold water soaking,high-temperature treatment at78℃for 10 min,hot water soaking,and high-temperature treatment at 78℃for 5 min showed significantly higher germination percentage from the remaining treatments(75,64,58,56,and 53%,respectively).To break the dormancy of T.laxiflora seed and attain good germination result,seeds should be pretreated with high-temperature at 78℃for 10 min to test the initial germination before storage and should be pretreated with high-temperature(at 78℃for15,10,or 5 min),soaked in cold,or hot water for 24 h to monitor the germination after storage.The two experiments show that T.laxiflora produces orthodox seed.
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 51575475 and 51675465).
文摘The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.
基金supported by the National Natural Science Foundation of China(51325102)the International Science and Technology Cooperation Program of Ministry of Science and Technology(2015DFA90750)
文摘Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °C in air were investigated. The oxidation kinetics of Ni-11Fe-10Cu alloy followed parabolic law at 750 °C without spallation and linear law at 950 °C with severe spallation, while that of Ni-11Fe-10Cu-6Al-3Y alloy followed parabolic law at 750 and 950 °C without spallation. The parabolic rate constant (kp) of Ni-11Fe-10Cu was smaller than that of Ni-11Fe-10Cu-6Al-3Y at 750 °C. The oxide scale formed on Ni-11Fe-10Cu at 750 °C was composed of a CuO outer layer, a NiFe2O4 middle layer and a NiO inner layer. The oxide scale formed on Ni-11Fe-10Cu-6Al-3Y at 750 °C was also composed of the similar triplex layers in addition to an internal oxidation zone containing Al, Ni and Cu oxide and the microstructure of the scale changed with increasing temperature. Although the doping Al and Y could improve the adherence of oxide scale, it could aggravate the extent of internal oxidation. Based on the combination of X-ray diffraction (XRD), scanning electron mi-croscopy/energy dispersive spectroscopy (SEM/EDX) analysis, the microstructure and growth mechanism of the multi-layer oxide scale was studied and the effect of doping Al and Y on the oxidation behavior of Ni-11Fe-10Cu alloy was also discussed.
基金supported by the National Key Program of Research and Development(No.2018YFB0703902)the National Natural Science Foundation of China(Nos.51631002,51621003,52101003,52171061,U20A20236)。
文摘Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature.Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbides is highly desirable but still a big challenge.In this study,it is proposed that the hightemperature compression strength of ultra-coarse cemented carbides can be enhanced by modulating hard matrix grains by activated Ta C nanoparticles,through solid solution strengthening of Ta atoms.Based on the designed experiments and microstructural characterizations combined with finite element simulations,the grain morphology,stress distribution and dislocation configuration were studied in detail for ultra-coarse grained cemented carbides.The mechanisms of Ta dissolving in WC crystal and strengthening ultra-coarse grains through interaction with dislocations were disclosed from the atomic scale.This study opens a new perspective to modulate hard phases of cemented carbides for improving their hightemperature performance,which will be applicable to a variety of cermet and ceramic-based composite materials.