We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is foun...We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm^3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass.展开更多
To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the ...To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.展开更多
High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the co...High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the composition ratio of ladle filler sand and sintering time on the high-temperature compression resistance of chromium-containing stuffing sand in the temperature range of 1 500- 1 600 ℃. The results show that the refractoriness of ladle filler sand w as the low est( only 1 610 ℃) w hen the composition ratio of chromite sand and silica sand w as 6∶ 4. M oreover,the high-temperature compression resistance w as high w hen the content of chromite sand w as at 70%; the resistance increased w ith increasing sintering time. When the sintering time w as extended at a temperature of 1 600 ℃,the high-temperature compression resistance of ladle filler sand first increased and then decreased after being overburnt.展开更多
Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondar...Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondary phase particles(SPPs)that precipitated in Zircaloy-4 alloy under high-temperature compression were investigated in detail by utilizing high-resolution transmission electron microscopy(HRTEM)and conventional TEM techniques.The frequently observed Zr(Fe,Cr)_(2)SPPs were incoherent with the matrix and exhibited brittle fracture behaviors without measurable plasticity.HRTEM observations revealed two mechanisms underlying the nano-refinement of incoherent micro-sized SPPs via localized shear fracture on{11¯2}SPP and nanoprecipitate-assisted bending fracture,respectively.The latter was,for the first time,found to occur when the movements of large SPPs were blocked by nanometer-sized SPP during alloy deformation.Accordingly,two force models were proposed to visualize their potential nano-refinement processes.The knowledge attained from this study sheds new light on the deformation behaviors of Zr(Fe,Cr)_(2)SPPs and their associated size refinement mechanisms under high-temperature compression,and is expected to greatly benefit the process optimization of zirconium alloys to achieve precipitate nano-refinement.展开更多
TiC-TiB2/Cu composites were prepared by self-propagating high-temperature synthesis with pseudo hot isostatic pressing using Ti, B4C, and Cu powders. The compressive deformation of the composites at high tem- perature...TiC-TiB2/Cu composites were prepared by self-propagating high-temperature synthesis with pseudo hot isostatic pressing using Ti, B4C, and Cu powders. The compressive deformation of the composites at high tem- perature was investigated. It is found that the maximum compressive strength decreases with the increase of tem- perature and Cu content. The deformation of the composites includes the steps of elastic, stable theology, and inaction. The maximum strain is in the range of 5 %-10 %. Before fracture, TiC-TiB2/40Cu becomes drum-shaped at 1123 K; however, TiC-TiB2/20Cu only has a brittle frac- ture along the axial direction of 45~. The results show that the compressive strength of TiC-TiB2/Cu decreases from 823 to 1223 K. However, the maximum compressive strength of TiC-TiB2/20Cu reaches 1850 MPa at 823 K, which predicts that this series of composites could be applied to high-temperature compressive materials.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51727807 and 11875318)Beijing Institute of Technology Research Fund Program for Young ScholarsYue Qi Young Scholar Project in CUMTB。
文摘We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm^3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass.
基金Projects(51979272,BZ2020066)supported by the National Natural Science Foundation of ChinaProjet supported by the Department of Science and Technology of Jiangsu Province,China。
文摘To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.
文摘High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the composition ratio of ladle filler sand and sintering time on the high-temperature compression resistance of chromium-containing stuffing sand in the temperature range of 1 500- 1 600 ℃. The results show that the refractoriness of ladle filler sand w as the low est( only 1 610 ℃) w hen the composition ratio of chromite sand and silica sand w as 6∶ 4. M oreover,the high-temperature compression resistance w as high w hen the content of chromite sand w as at 70%; the resistance increased w ith increasing sintering time. When the sintering time w as extended at a temperature of 1 600 ℃,the high-temperature compression resistance of ladle filler sand first increased and then decreased after being overburnt.
文摘Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondary phase particles(SPPs)that precipitated in Zircaloy-4 alloy under high-temperature compression were investigated in detail by utilizing high-resolution transmission electron microscopy(HRTEM)and conventional TEM techniques.The frequently observed Zr(Fe,Cr)_(2)SPPs were incoherent with the matrix and exhibited brittle fracture behaviors without measurable plasticity.HRTEM observations revealed two mechanisms underlying the nano-refinement of incoherent micro-sized SPPs via localized shear fracture on{11¯2}SPP and nanoprecipitate-assisted bending fracture,respectively.The latter was,for the first time,found to occur when the movements of large SPPs were blocked by nanometer-sized SPP during alloy deformation.Accordingly,two force models were proposed to visualize their potential nano-refinement processes.The knowledge attained from this study sheds new light on the deformation behaviors of Zr(Fe,Cr)_(2)SPPs and their associated size refinement mechanisms under high-temperature compression,and is expected to greatly benefit the process optimization of zirconium alloys to achieve precipitate nano-refinement.
基金financially supported by the National Natural Science Foundation of China(No.51172057)the Science Innovate Talents Special Foundation of Harbin(No.2011RXXG011)
文摘TiC-TiB2/Cu composites were prepared by self-propagating high-temperature synthesis with pseudo hot isostatic pressing using Ti, B4C, and Cu powders. The compressive deformation of the composites at high tem- perature was investigated. It is found that the maximum compressive strength decreases with the increase of tem- perature and Cu content. The deformation of the composites includes the steps of elastic, stable theology, and inaction. The maximum strain is in the range of 5 %-10 %. Before fracture, TiC-TiB2/40Cu becomes drum-shaped at 1123 K; however, TiC-TiB2/20Cu only has a brittle frac- ture along the axial direction of 45~. The results show that the compressive strength of TiC-TiB2/Cu decreases from 823 to 1223 K. However, the maximum compressive strength of TiC-TiB2/20Cu reaches 1850 MPa at 823 K, which predicts that this series of composites could be applied to high-temperature compressive materials.