期刊文献+
共找到23,612篇文章
< 1 2 250 >
每页显示 20 50 100
Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels 被引量:1
1
作者 Hongxiong Li Zhaofu Ding +5 位作者 Quan Zhou Jun Chen Zhuoxin Liu Chunyu Du Lirong Liang Guangming Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期196-210,共15页
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni... Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare. 展开更多
关键词 THERMOELECTRICS AEROGEL SELF-POWERED high-temperature monitoring high-temperature warning
下载PDF
Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Re in forced Structure 被引量:1
2
作者 Mengjia Feng Yu Feng +5 位作者 Changhai Zhang Tiandong Zhang Xu Tong Qiang Gao Qingguo Chen Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期299-307,共9页
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a hi... Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics. 展开更多
关键词 all-organic energy storage density high-temperature high-temperature breakdown strength
下载PDF
Phase behavior of gas condensate in porous media using real-time computed tomography scanning
3
作者 Wen-Long Jing Lei Zhang +5 位作者 Ai-Fen Li Jun-Jie Zhong Hai Sun Yong-Fei Yang Yu-Long Cheng Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1032-1043,共12页
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp... The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs. 展开更多
关键词 Gas condensate Pressure depletion Real-time micro-computed tomography scanning Distribution of condensate liquid
下载PDF
TiN/Fe_(2)N/C composite with stable and broadband high-temperature microwave absorption
4
作者 Yahong Zhang Yi Zhang +5 位作者 Huimin Liu Dan Li Yibo Wang Chunchao Xu Yuping Tian Hongjie Meng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2508-2517,共10页
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and... Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions. 展开更多
关键词 high-temperature impedance matching stable permittivity dielectric loss
下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
5
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
6
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-Cu-Mg alloy high-temperature properties Zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
HZSM-5 zeolites undergoing the high-temperature process for boosting the bimolecular reaction in n-heptane catalytic cracking
7
作者 Chenggong Song Zhenzhou Ma +6 位作者 Xu Hou Hao Zhou Huimin Qiao Changchang Tian Li Yin Baitang Jin Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期136-144,共9页
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,... High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking. 展开更多
关键词 HZSM-5 N-HEPTANE Catalytic cracking high-temperature treatment Extra-framework Al
下载PDF
Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
8
作者 牛真霞 高超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期209-215,共7页
Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce da... Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments. 展开更多
关键词 Bose-Einstein condensate quench interaction SOLITON vortex
下载PDF
A review of in-situ high-temperature characterizations for understanding the processes in metallurgical engineering
9
作者 Yifan Zhao Zhiyuan Li +2 位作者 Shijie Li Weili Song Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2327-2344,共18页
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical... For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes. 展开更多
关键词 in-situ characterization methods high-temperature electrochemistry ELECTRODES molten salts interfacial reaction
下载PDF
Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
10
作者 赖龙泉 李照 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期238-243,共6页
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo... Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives. 展开更多
关键词 Bose-Einstein condensate particle emission periodic drive
下载PDF
Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations
11
作者 Long-Quan Lai Zhao Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期153-158,共6页
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this... Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving. 展开更多
关键词 Bose-Einstein condensate matter-wave jet periodic modulation
下载PDF
Coherence of nonlinear Bloch dynamics of Bose-Einstein condensates in deep optical lattices
12
作者 张爱霞 张薇 +3 位作者 王杰 胡潇文 米来来 薛具奎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期297-303,共7页
Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinea... Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force. 展开更多
关键词 Bose-Einstein condensate atomic interaction Bloch oscillations
下载PDF
Natural Lignin:A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery
13
作者 Yuqi She Xiwei Li +4 位作者 Yanqin Zheng Dong Chen Xianhong Rui Xuliang Lin Yanlin Qin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期1-8,共8页
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el... Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices. 展开更多
关键词 high-temperature performance LIGNIN Na storage mechanism organic anode sodium-ion battery
下载PDF
Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector
14
作者 Xuexia Chen Dongwen Yang +6 位作者 Xun Yang Qing Lou Zhiyu Liu Yancheng Chen Chaofan Lv Lin Dong Chongxin Shan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期275-283,共9页
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS... Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices. 展开更多
关键词 graphitic carbon nitride high-temperature stability lateral photovoltaic effect position-sensitive detectors two-dimensional materials
下载PDF
A Novel Fracturing Fluid with High-Temperature Resistance for Ultra-Deep Reservoirs
15
作者 Lian Liu Liang Li +2 位作者 Kebo Jiao Junwei Fang Yun Luo 《Fluid Dynamics & Materials Processing》 EI 2024年第5期975-987,共13页
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ... Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks. 展开更多
关键词 Ultra-deep reservoir high-temperature resistance weighted fracturing fluid guanidine gum potassium formatted
下载PDF
Novel Method for Evaluating the Aging of Aviation Turbine Engine Oils via High-Temperature Bearing Deposit Tests
16
作者 Hao Lichun Yang He +3 位作者 Song Haiqing Zhou Yunfan He Jingjian Liang Yuxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期67-77,共11页
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat... Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms. 展开更多
关键词 aviation turbine engine oil high-temperature bearing deposit test thermal-oxidative degradation antioxidant additives
下载PDF
A new model simulating the development of gas condensate reservoirs
17
作者 Yang Yang Zengmin Lun +2 位作者 Rui Wang Maolei Cui Wei Hu 《Energy Geoscience》 EI 2024年第1期239-248,共10页
A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model ... A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model predicts well performance,including bottom-hole pressure,oil/gas production rate,oil/gas recovery,gaseoil ratio,and the change in produced fluid composition.It also calculates dynamic characters,such as the change of pressure field and oil/gas saturation field during the development of gas condensate reservoirs.The model is applicable to different boundary conditions(both constant-pressure and sealed boundary)and different production modes(both constant-pressure and constant-volume production modes).Model validation attempted using numerical simulation results for sealed boundary conditions with constant-pressure production mode has shown a relatively good match,proving its validity.For constant-pressure boundary conditions with constant-volume production mode,four stages are defined according to the dynamic behavior of production performance in the development of gas condensate reservoirs. 展开更多
关键词 Gas condensate reservoir Phase behavior Numerical simulation Pseudo-pressure method
下载PDF
Mapping and resource evaluation of deep high-temperature geothermal resources in the Jiyang Depression,China
18
作者 Shaozheng Wang Yaoqi Zhou +5 位作者 Xin Zhang Yangzhou Wang Yonghong Yang Yuehan Shang Yang Chen Xiaoxin Shi 《Energy Geoscience》 EI 2024年第4期142-155,共14页
In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“d... In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression. 展开更多
关键词 Deep high-temperature geothermal resource Geological modeling Resource assessment Lower Paleozoic Jiyang Depression
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
19
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell high-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
20
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部