期刊文献+
共找到13,059篇文章
< 1 2 250 >
每页显示 20 50 100
High-temperature Creep Behavior Characterization of Asphalt Mixture based on Micromechanical Modeling and Virtual Test 被引量:1
1
作者 马涛 ZHANG Deyu +1 位作者 ZHAO Yongli HUANG Xiaoming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1311-1318,共8页
The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical mode... The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective. 展开更多
关键词 asphalt mixture creep behavior micromechanical modeling discrete element method
下载PDF
High-temperature creep properties of uranium dioxide pellet 被引量:2
2
作者 高家诚 王良芬 +1 位作者 王勇 吴曙芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期238-242,共5页
High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes(9.0μm and 23.8μm)were studied.The results indicate that the creep rate becomes a little faster with the reduction of the ura... High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes(9.0μm and 23.8μm)were studied.The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load.At the same temperature,the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load,the steady creep rate of the sintered uranium dioxide pellet increases.Under the same load,the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature;and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0μm and 23.8μm under 10 MPa are almost the same.The creep process is controlled both by Nabarro—Herring creep and Hamper—Dorn creep for uranium dioxide pellet with grain size of 9.0μm,while Hamper—Dorn creep is the dominant mechanism for uranium dioxide with grain size of 23.8μm. 展开更多
关键词 高温蠕变性能 二氧化铀 碳颗粒 晶粒尺寸 温度降低 蠕变率 蠕变速率 线性关系
下载PDF
High-temperature creep properties of fine grained heat-affected zone in P92 weldment
3
作者 王学 史专 +1 位作者 潘乾刚 吴洪亮 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期772-775,共4页
The simulated fine grained heat-affected zone (FGHAZ) specimens for P92 welded joints were prepared by heat treatment, then the creep tests were carried out at 650 ℃ under the applied stress of 90-120 MPa to investig... The simulated fine grained heat-affected zone (FGHAZ) specimens for P92 welded joints were prepared by heat treatment, then the creep tests were carried out at 650 ℃ under the applied stress of 90-120 MPa to investigate high-temperature creep behavior of FGHAZ. The results show that the creep property of FGHAZ is much inferior to that of the base metal, which exhibits the much higher steady creep rate and shorter time to creep fracture. The power law equation can describe the steady creep rate dependence on applied stress, indicating that the stress exponent n of FGHAZ is distinguished between two regions with n=15.1 at high stresses (more than 100 MPa) and n=8.64 at lower stresses. Based on Monkman-Grant equation, the relationship between the secondary creep rate and time to rupture is obtained to evaluate the creep life of FGHAZ with the applied stress above 100 MPa. 展开更多
关键词 RESISTANT heat steel welding FINE grained heat-affected zone(FGHAZ) creep
下载PDF
Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels
4
作者 Hongxiong Li Zhaofu Ding +5 位作者 Quan Zhou Jun Chen Zhuoxin Liu Chunyu Du Lirong Liang Guangming Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期196-210,共15页
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni... Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare. 展开更多
关键词 THERMOELECTRICS AEROGEL SELF-POWERED high-temperature monitoring high-temperature warning
下载PDF
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
5
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-Cu-Mg alloy high-temperature properties Zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
HZSM-5 zeolites undergoing the high-temperature process for boosting the bimolecular reaction in n-heptane catalytic cracking
6
作者 Chenggong Song Zhenzhou Ma +6 位作者 Xu Hou Hao Zhou Huimin Qiao Changchang Tian Li Yin Baitang Jin Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期136-144,共9页
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,... High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking. 展开更多
关键词 HZSM-5 N-HEPTANE Catalytic cracking high-temperature treatment Extra-framework Al
下载PDF
Novel Method for Evaluating the Aging of Aviation Turbine Engine Oils via High-Temperature Bearing Deposit Tests
7
作者 Hao Lichun Yang He +3 位作者 Song Haiqing Zhou Yunfan He Jingjian Liang Yuxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期67-77,共11页
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat... Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms. 展开更多
关键词 aviation turbine engine oil high-temperature bearing deposit test thermal-oxidative degradation antioxidant additives
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
8
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell high-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets
9
作者 Hanxiao GUO Peifeng GAO Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期747-762,共16页
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app... Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets. 展开更多
关键词 epoxy-impregnated high-temperature superconducting(HTS)magnet multi-scale method global homogenization(GH) local refinement(LR) multi-field analysis
下载PDF
Seasonal Prediction of Extreme High-Temperature Days in Southwestern China Based on the Physical Precursors 被引量:1
10
作者 Zhiyi ZHOU Juan LI +1 位作者 Haishan CHEN Zhiwei ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1212-1224,共13页
Extreme high temperatures frequently occur in southwestern China,significantly impacting the local ecological system and economic development.However,accurate prediction of extreme high-temperature days(EHDs)in this r... Extreme high temperatures frequently occur in southwestern China,significantly impacting the local ecological system and economic development.However,accurate prediction of extreme high-temperature days(EHDs)in this region is still an unresolved challenge.Based on the spatiotemporal characteristics of EHDs over China,a domain-averaged EHD index over southwestern China(SWC-EHDs)during April-May is defined.The simultaneous dynamic and thermodynamic fields associated with the increased SWC-EHDs are a local upper-level anticyclonic(high-pressure)anomaly and wavy geopotential height anomaly patterns over Eurasia.In tracing the origins of the lower boundary anomalies,two physically meaningful precursors are detected for SWC-EHDs.They are the tripolar SST change tendency from December-January to February-March in the northern Atlantic and the February-March mean snow depth in central Asia.Using these two selected predictors,a physics-based empirical model prediction was applied to the training period of 1961–2005 to obtain a skillful prediction of the EHDs index,attaining a correlation coefficient of 0.76 in the independent prediction period(2006–19),suggesting that 58%of the total SWC-EHDs variability is predictable.This study provides an estimate for the lower bound of the seasonal predictability of EHDs as well as for the hydrological drought over southwestern China. 展开更多
关键词 extreme high-temperature days southwestern China seasonal prediction PREDICTABILITY
下载PDF
Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries 被引量:1
11
作者 Guangxu Zhang Xuezhe Wei +5 位作者 Siqi Chen Gang Wei Jiangong Zhu Xueyuan Wang Guangshuai Han Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期378-389,I0010,共13页
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates... Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries. 展开更多
关键词 Lithium-ion batteries high-temperature aging Thermal safety DEGRADATION Lithium plating
下载PDF
Study on the effect of thermal deformation on the liquid seal of high-temperature molten salt pump in molten salt reactor 被引量:1
12
作者 Xing‑Chao Shen Yuan Fu Jian‑Yu Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期128-138,共11页
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p... The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation. 展开更多
关键词 high-temperature molten salt pump Seal thermal deformation Leakage characteristics Seal dynamic characteristics Critical speed
下载PDF
High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling 被引量:1
13
作者 Aamir Hamid Khan Yizan Ma +9 位作者 Yuanlong Wu Adnan Akbar Muhammad Shaban Abid Ullah Jinwu Deng Abdul Saboor Khan Huabin Chi Longfu Zhu Xianlong Zhang Ling Min 《The Crop Journal》 SCIE CSCD 2023年第1期33-45,共13页
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi... Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT. 展开更多
关键词 Cotton(Gossypium hirsutum) Jasmonic acid Allene oxide cyclase 2 ROS CRISPR/Cas9 high-temperature stress
下载PDF
High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel 被引量:3
14
作者 Ying Han Jiaqi Sun +3 位作者 Jiapeng Sun Guoqing Zu Weiwei Zhu Xu Ran 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第6期789-801,共13页
The creep behavior of Fe–17 Cr–1.2 Cu–0.5 Nb–0.01 C ferritic heat-resistant stainless steel was investigated at temperatures ranging from 973 to 1123 K and stresses from 15 to 90 MPa.The evolution of precipitates ... The creep behavior of Fe–17 Cr–1.2 Cu–0.5 Nb–0.01 C ferritic heat-resistant stainless steel was investigated at temperatures ranging from 973 to 1123 K and stresses from 15 to 90 MPa.The evolution of precipitates after creep deformation was analyzed by scanning electron microscopy,energy dispersion spectrum,and transmission electron microscopy.The minimum creep rate decreased with the decrease in the applied load and temperature,thereby extending the rupture life.Cu-rich phase and Nb-rich Laves particles were generated in dominant quantities during the creep process,and the co-growth relationship between them could be detected.Creep rupture was featured by ductile fracture with considerable necking.As increasing the temperature and decreasing the stress,the softening of the metal matrix was accelerated,showing more obvious plastic fl ow.The true stress exponent and activation energy were 4.9 and 375.5 kJ/mol,respectively,indicating that the creep deformation was dominated by the diffusion-controlled dislocation creep mechanism involving precipitate-dislocation interactions.Based on the creep rupture data obtained,the Monkman–Grant relation and Larson-Miller parameter were established,which described the creep rupture life for the studied steel well. 展开更多
关键词 Stainless steel creep PRECIPITATE Deformation mechanism
原文传递
A 3–5μm broadband YBCO high-temperature superconducting photonic crystal
15
作者 刘刚 李远航 +4 位作者 贾宝楠 高永潘 韩利红 芦鹏飞 宋海智 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期291-298,共8页
Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural p... Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection. 展开更多
关键词 high-temperature superconducting MID-INFRARED photonic crystal single-photon detection
下载PDF
Risks of non-conservative design according to ASME B31.1 for high-temperature piping subjected to long-term operation in the creep range 被引量:1
16
作者 Hyeong-Yeon Lee Seok-Kwon Son +1 位作者 Min-Gu Won Ji-Young Jeong 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期59-69,共11页
This study investigates the risks of non-conservative piping design according to ASME B31.1 for hightemperature piping subjected to long-term operation at high temperature in a creep regime based on a sensitivity anal... This study investigates the risks of non-conservative piping design according to ASME B31.1 for hightemperature piping subjected to long-term operation at high temperature in a creep regime based on a sensitivity analysis of the hold time. Design evaluations of hightemperature piping were conducted over a range of hold times in the creep regime according to ASME B31.1,which implicitly considers the creep effects, and the French high-temperature design code of the RCC-MRx, which explicitly considers the creep effects. Conservatisms were quantified among the codes in terms of the hold times. In the case of B31.1, the design evaluation results do not change depending on the hold time at high temperature,whereas in the case of RCC-MRx, they do. It was shown that the design limits of RCC-MRx were exceeded when the hold time exceeded certain values, whereas those of B31.1 were satisfied regardless of the hold times. Thus, the design evaluations according to B31.1 did not consistently yield conservative results and might lead to non-conservative results in the case of long-term operations in the creep range. 展开更多
关键词 ASME B31.1 creep HOLD time Hightemperature PIPING RCC-MRx Sensitivity analysis
下载PDF
Enhancement of the Mechanical Performance of SiCf/Phenolic Composites after High-temperature Pyrolysis Using ZrC/B_(4)C Particles
17
作者 DING Jie LI Yan +4 位作者 SHI Minxian HUANG Zhixiong QIN Yan ZHUANG Yingluo WANG Cunku 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1262-1268,共7页
The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on t... The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃. 展开更多
关键词 SiC fiber phenolic resin mechanical performance high-temperature pyrolysis
下载PDF
The Research for Surface Properties of Steel Slag Powder and High-Temperature Rheological Properties of Asphalt Mortar
18
作者 WANG Yefei YUAN Yan +2 位作者 YANG Lihong LIU Yong CHEN Yiwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1096-1104,共9页
In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag ... In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag powder and mineral powder(limestone powder)were compared by scanning electron microscope(SEM),and the high-temperature rheological properties of asphalt mortar with difierent ratio of filler quality to asphalt quality(F/A)and difierent substitution rates of mineral powder(S/F)were studied by dynamic shear rheological test.The results show that the surface microstructure of steel slag powder is more abundant than that of mineral powder,and the adhesion of steel slag to asphalt is better than that of limestone.At the same temperature,the lower the ratio of S/F is,the greater the rutting factor and complex modulus will be.In addition,the complex modulus and rutting factor of the asphalt mortar increase with the increase of F/A,and the filler type and F/A have a negligible efiect on the phase angle. 展开更多
关键词 steel slag powder asphalt mortar microcosmic ADHESION high-temperature rheological properties
下载PDF
Effect of nano TiO_(2) and SiO_(2) on gelation performance of HPAM/PEI gels for high-temperature reservoir conformance improvement
19
作者 Yang Liu Hong-Jun Zhang +5 位作者 Dao-Yi Zhu Zi-Yuan Wang Jun-Hui Qin Qi Zhao Yu-Heng Zhao Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3819-3829,共11页
Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects ... Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement. 展开更多
关键词 Nano-TiO_(2) Nano-SiO_(2) Gel strength Polymer gel high-temperature reservoirs.
下载PDF
Synthesis of phosphonated graphene oxide by electrochemical exfoliation to enhance the performance and durability of high-temperature proton exchange membrane fuel cells
20
作者 Jianuo Chen Zunmin Guo +3 位作者 Maria Perez-Page Yifeng Jia Ziyu Zhao Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期448-458,I0011,共12页
The doping of functionalized graphene oxide(GO)in the membranes becomes a promising method for improving the performance of high-temperature proton exchange membrane fuel cells(HT-PEMFC).Phosphonated graphene oxide(PG... The doping of functionalized graphene oxide(GO)in the membranes becomes a promising method for improving the performance of high-temperature proton exchange membrane fuel cells(HT-PEMFC).Phosphonated graphene oxide(PGO)with a P/O ratio of 8.5%was quickly synthesised by one-step electrochemical exfoliation based on a three-dimensiaonal(3D)printed reactor and natural graphite flakes.Compared with the GO prepared by the two-step electrochemical exfoliation method,the PGO synthesized by the one-step electrochemical exfoliation can better improve the performance of the membrane-electrode-assembly(MEA)based on the polybenzimidazole(PBI)membrane in the HTPEMFC.The doping of 1.5 wt%GO synthesised by electrochemical exfoliation with the 2-step method or reactor method in PBI increased the peak power density by 17.4%or 35.4%compared to MEA based on pure PBI membrane at 150℃,respectively.In addition,the doping of PGO in PBI improves its durability under accelerated stress test(AST). 展开更多
关键词 Electrochemical exfoliation Phosphonated graphene oxide high-temperature fuel cells
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部