Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and develop...Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and development.In this study,osmotic regulation,antioxidant enzyme activities,and photosynthetic characteristics of tree peony in response to high-temperature stress were investigated.The results showed that high-temperature stress had destroyed the cell membrane,manifested as the increased relative electrical conductivity and malondialdehyde content.Moreover,high-temperature stress led to excessive accumulation of reactive oxygen species,thereby,activating antioxidant enzyme activities.Also,photosynthetic parameters and chlorophyll fluorescence parameters directly reflected the damage to the photosystem II reflection center under high-temperature stress.In addition,high-temperature stress led to stomatal closure and chloroplast damage.This study revealed the physiological responses of tree peony to high-temperature stress,laying a foundation for the promotion of tree peony in high-temperature areas and the improvement of high-temperature resistance.展开更多
The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses ...The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.展开更多
The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev...The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.展开更多
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p...The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.展开更多
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
The viscoelastic characteristics of Aspen laminated veneer lumber (LVD were investigated with results revealing the dynamic creep behaviour under asymmetrical cyclic loading, which is analogous to solid wood under a s...The viscoelastic characteristics of Aspen laminated veneer lumber (LVD were investigated with results revealing the dynamic creep behaviour under asymmetrical cyclic loading, which is analogous to solid wood under a static load. Curves for the creep indicated that after 10s cycles, the multiple correlation coefficient R2 for the 4-element, is more than 0. 98 in any instance, overwhelmingly well fitted to the data obtained. The mean square error of the 3-element viscoelastic model was 1 - 5 times higher than of the 4-ele-ment model under various cyclic loadings within a relative large loading range. The viscoelastic curves for LVL samples are nonlinear. They were linearized at some stress levels below 60% of their limited intensities. As loading was sustained for a longer period, the viscous flow was found to have a tendency of attenuation. The work absorbed by a specimen before the occurrence of creep failure, could be estimated in terms of failure appearance. Consequently, we could calculate the展开更多
Through the analysis of durative high-temperature weather process occurred in Xingtai area in June of 2010,and the statistics on relative humidity and 850 hPa of temperature on high temperature day in Xingtai area dur...Through the analysis of durative high-temperature weather process occurred in Xingtai area in June of 2010,and the statistics on relative humidity and 850 hPa of temperature on high temperature day in Xingtai area during 2001- 2010,it was concluded that 500 h Pa of stable warm high-pressure ridge situation and 850 hPa of strong warm air mass control were favorable circulation situations for the formation of high temperature;sinking and adiabatic warming of high-altitude air mass was an important cause of high temperature weather generation; ground humidity at 14: 00 was small,that is,the atmosphere was very dry,and it was sunny-cloudy( high cirrus) weather,which was a necessary condition for the high temperature weather; westerly at some time was favorable condition for high temperature; 850 h Pa of temperature prediction at the station was the key.When the forecasted 850 h Pa of station temperature was 21 ℃ and above,it was reminded the forecasters in the high-temperature forecast process.展开更多
Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers...Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.展开更多
High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a...High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.展开更多
In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested ...In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested seed cotton in the Xinjiang region was taken as the research object to find out the compression creep characteristics.The universal material testing machine was used to carry out a one-factor creep test,taking moisture content,feed quality,compression times,and trash content as test factors and instantaneous elastic modulus,hysteretic elastic modulus,viscosity coefficient,and delay time as test indicators.The ANOVA and correlation were analyzed by SPSS,and the creep process of the seed cotton was simulated by ADAMS.Results show that moisture content significantly affects the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01).In addition,each value of which decreases with the increase in moisture content.Feed quality significantly affects the hysteretic elastic modulus and viscosity coefficient(p<0.05).Moreover,the hysteretic elastic modulus and viscosity coefficient increase with the increase in feed quality.The compression times significantly influence the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01),each value of which increases with the increase of compression times.Furthermore,the trash content significantly influenced the hysteretic elastic modulus and viscosity coefficient(p<0.05).The absolute error between the simulated and experimental values ek is within−0.011-0.030 mm,and the relative errorφk is less than 7%.The experimental results can provide theoretical and data support for the study of rheological characteristics of machine-harvested seed cotton,the design of seed cotton packing devices,and the molding quality of cotton bale(mold).展开更多
High-temperature circulating fans blow 800 ℃ HN protective atmosphere to the surface of the strip as a jet heating power source or suspending source,playing a core role in metal strip continuous annealing furnaces. I...High-temperature circulating fans blow 800 ℃ HN protective atmosphere to the surface of the strip as a jet heating power source or suspending source,playing a core role in metal strip continuous annealing furnaces. In this study,several high-temperature alloys were experimentally compared based on their high-temperature mechanical properties,high-temperature creep resistance,and high-temperature oxidation resistance. The results indicate that though the price of HR-120 alloy is only half of Inconel 601,it is suitable for the manufacture of fans that can withstand a high temperature of 800 ℃ given its good creep resistance,high-temperature oxidation resistance,and price advantage.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
基金supported by Jiangsu Modern Agricultural Industrial Technology System(JATS[2022]489)Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(CX(22)3186)+1 种基金Policy Guidance Program of Jiangsu Province-Science and Technology Special Project of Northern Jiangsu Province(SZ-SQ2021041)the Qing Lan Project of Jiangsu Province and High-Level Talent Support Program of Yangzhou University.
文摘Tree peony(Paeonia suffruticosa Andr.)is a traditional Chinese flower,which prefers cool weather.However,high temperature in summer in the middle and lower reaches of the Yangtze River restricts its growth and development.In this study,osmotic regulation,antioxidant enzyme activities,and photosynthetic characteristics of tree peony in response to high-temperature stress were investigated.The results showed that high-temperature stress had destroyed the cell membrane,manifested as the increased relative electrical conductivity and malondialdehyde content.Moreover,high-temperature stress led to excessive accumulation of reactive oxygen species,thereby,activating antioxidant enzyme activities.Also,photosynthetic parameters and chlorophyll fluorescence parameters directly reflected the damage to the photosystem II reflection center under high-temperature stress.In addition,high-temperature stress led to stomatal closure and chloroplast damage.This study revealed the physiological responses of tree peony to high-temperature stress,laying a foundation for the promotion of tree peony in high-temperature areas and the improvement of high-temperature resistance.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos: 51704209,51701060,51901153)Natural Science Foundation of Shanxi province (Nos: 201801D121088,201901D211096)the Science and Technology Major Project of Shanxi province (Nos: 20191102007,20191102008)。
文摘The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.
基金supported by the PCSIRT of the Ministry of Education of China (No. IRT0751)the National High Technology Research and Development Program of China (863 Program: No. 2007AA03Z203)+2 种基金the National Natural Science Foundation of China (Nos.50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (No.SRFDP200806130023)the Fundamental Research Funds for the Central Universities (Nos. SWJTU09BR152, SWJTU09ZT24 and SWJTU11CX073)
文摘The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.
基金the Strategic Pilot Technology Chinese Academy of Sciences(No.XDA02010500).
文摘The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
文摘The viscoelastic characteristics of Aspen laminated veneer lumber (LVD were investigated with results revealing the dynamic creep behaviour under asymmetrical cyclic loading, which is analogous to solid wood under a static load. Curves for the creep indicated that after 10s cycles, the multiple correlation coefficient R2 for the 4-element, is more than 0. 98 in any instance, overwhelmingly well fitted to the data obtained. The mean square error of the 3-element viscoelastic model was 1 - 5 times higher than of the 4-ele-ment model under various cyclic loadings within a relative large loading range. The viscoelastic curves for LVL samples are nonlinear. They were linearized at some stress levels below 60% of their limited intensities. As loading was sustained for a longer period, the viscous flow was found to have a tendency of attenuation. The work absorbed by a specimen before the occurrence of creep failure, could be estimated in terms of failure appearance. Consequently, we could calculate the
文摘Through the analysis of durative high-temperature weather process occurred in Xingtai area in June of 2010,and the statistics on relative humidity and 850 hPa of temperature on high temperature day in Xingtai area during 2001- 2010,it was concluded that 500 h Pa of stable warm high-pressure ridge situation and 850 hPa of strong warm air mass control were favorable circulation situations for the formation of high temperature;sinking and adiabatic warming of high-altitude air mass was an important cause of high temperature weather generation; ground humidity at 14: 00 was small,that is,the atmosphere was very dry,and it was sunny-cloudy( high cirrus) weather,which was a necessary condition for the high temperature weather; westerly at some time was favorable condition for high temperature; 850 h Pa of temperature prediction at the station was the key.When the forecasted 850 h Pa of station temperature was 21 ℃ and above,it was reminded the forecasters in the high-temperature forecast process.
文摘Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.
基金National Key Research and Development Program of China(No.2021YFB3702604)National Natural Science Foundation of China(No.52002326).
文摘High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.
基金the National Natural Science Foundation of China(Grant No.51605314,No.51805338,and No.32260435)Major Science and Technology Projects of the Corps(Grant No.2018AA008)+2 种基金Project of the Corps’Key Area Innovation Team Building Program(Grant No.2019CB006)Shihezi University Young Innovative Talents Project(Grant No.CXPY202120)Postgraduate Research Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.XJ2021G114).
文摘In view of the unclear understanding of the basic scientific problems such as the rheological mechanism of seed cotton,especially the lack of research on the creep characteristics of seed cotton,the machine-harvested seed cotton in the Xinjiang region was taken as the research object to find out the compression creep characteristics.The universal material testing machine was used to carry out a one-factor creep test,taking moisture content,feed quality,compression times,and trash content as test factors and instantaneous elastic modulus,hysteretic elastic modulus,viscosity coefficient,and delay time as test indicators.The ANOVA and correlation were analyzed by SPSS,and the creep process of the seed cotton was simulated by ADAMS.Results show that moisture content significantly affects the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01).In addition,each value of which decreases with the increase in moisture content.Feed quality significantly affects the hysteretic elastic modulus and viscosity coefficient(p<0.05).Moreover,the hysteretic elastic modulus and viscosity coefficient increase with the increase in feed quality.The compression times significantly influence the instantaneous elastic modulus,hysteretic elastic modulus,and viscosity coefficient(p<0.01),each value of which increases with the increase of compression times.Furthermore,the trash content significantly influenced the hysteretic elastic modulus and viscosity coefficient(p<0.05).The absolute error between the simulated and experimental values ek is within−0.011-0.030 mm,and the relative errorφk is less than 7%.The experimental results can provide theoretical and data support for the study of rheological characteristics of machine-harvested seed cotton,the design of seed cotton packing devices,and the molding quality of cotton bale(mold).
文摘High-temperature circulating fans blow 800 ℃ HN protective atmosphere to the surface of the strip as a jet heating power source or suspending source,playing a core role in metal strip continuous annealing furnaces. In this study,several high-temperature alloys were experimentally compared based on their high-temperature mechanical properties,high-temperature creep resistance,and high-temperature oxidation resistance. The results indicate that though the price of HR-120 alloy is only half of Inconel 601,it is suitable for the manufacture of fans that can withstand a high temperature of 800 ℃ given its good creep resistance,high-temperature oxidation resistance,and price advantage.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.