In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm...In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.展开更多
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva...Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.展开更多
Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anod...Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anode material,we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability.The resulting Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) shows the smallest ionic packing factor among Wadsley–Roth niobate materials.Compared with Mg_(2)Nb_(34)O_(87),Mg1.5Ca0.5Nb_(34)O_(87) delivers a 1.6 times faster Liþdiffusivity at-20℃,leading to 56%larger reversible capacity and 1.5 times higher rate capability.Furthermore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) exhibits an 11%smaller maximum unit-cell volume expansion upon lithiation at 60℃,resulting in better cyclic stability;at 10C after 500 cycles,it has a 7.1%higher capacity retention,and its reversible capacity at 10C is 57%larger.Therefore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) is an allclimate anode material capable of working at harsh temperatures,even when its particle sizes are in the order of micrometers.展开更多
During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are n...During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are not enough relevant studies at present.Based on this,the thermal damage tests of granite at different temperatures(250,350,450°C)and quenching cycles(1,5,10,15 cycles)were carried out.Preliminary reveals the damage mechanism and heat transfer law of the quenching cycle effect on hot dry rock.The results show that with the increase of temperature and cycles,the uneven thermal expansion of minerals and the thermal shock caused by quenching promote the crack development of granite,resulting in the decrease of P-wave velocity,thermal conductivity and uniaxial compressive strength of granite.Meanwhile,the COMSOL was used to simulate the heat transfer of hot dry rock under different heat treatment conditions.It concluded that the increase in the number of quenching cycles reduced the heat transfer capacity of the granite,especially more than 10 quenching cycles,which also reflects that the thermal fatigue damage leads to a longer time for the temperature recovery of the hot dry rock mass.In addition,the three-dimensional nonlinear fitting relationship among thermal conductivity,temperature and cycle number was established for the first time,which can better reveal the change rule of thermal conductivity after quenching thermal fatigue effect of hot dry rock.The research results provide theoretical support for hot dry rock reservoir reconstruction and production efficiency evaluation.展开更多
Sc was doped into Gd_(2)Zr_(2)O_(7) for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd_(2)Zr_(2)O_(7) lattice, and the mechanical and thermophysica...Sc was doped into Gd_(2)Zr_(2)O_(7) for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd_(2)Zr_(2)O_(7) lattice, and the mechanical and thermophysical properties of the doped Gd_(2)Zr_(2)O_(7) were systematically studied by the first-principles method, based on which the Sc doping content was optimized. Additionally, Sc-doped Gd_(2)Zr_(2)O_(7) TBCs with the optimized composition were prepared by air plasma spraying using YSZ as a bottom ceramic coating (Gd-Sc/YSZ TBCs), and their sintering behavior and thermal cycling performance were examined. Results revealed that at low Sc doping levels, Sc has a large tendency to occupy the lattice interstitial sites, and when the doping content is above 11.11 at%, Sc substituting for Gd in the lattice becomes dominant. Among the doped Gd_(2)Zr_(2)O_(7), the composition with 16.67 at% Sc content has the lowest Pugh’s indicator (G/B) and the highest Poisson ratio (σ) indicative of the highest toughness, and the decreasing trends of Debye temperature and thermal conductivity slow down at this composition. By considering the mechanical and thermophysical properties comprehensively, the Sc doping content was optimized to be 16.67 at%. The fabricated Gd-Sc coatings remain phase and structural stability after sintering at 1400 ℃ for 100 h. Gd-Sc/YSZ TBCs exhibit excellent thermal shock resistance, which is related to the good thermal match between Gd-Sc and YSZ coatings, and the buffering effect of the YSZ coating during thermal cycling. These results revealed that Sc-doped Gd_(2)Zr_(2)O_(7) has a high potential for TBC applications, especially for the composition with 16.67 at% Sc content.展开更多
Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sand...Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.展开更多
The P2-type manganese-based Na_(0.7)MnO_(2) cathode materials attract great interest due to their high theoretical capacity.However,these materials suffer from rapid capacity fading,poor rate performance and severe vo...The P2-type manganese-based Na_(0.7)MnO_(2) cathode materials attract great interest due to their high theoretical capacity.However,these materials suffer from rapid capacity fading,poor rate performance and severe voltage decay resulting from phase transition and sluggish reaction kinetics.In this work we report a novel Nb-doped Na_(0.7)[Ni_(0.3)Co_(0.1)Mn_(0.6)]_(1-x)Nb_(x)O_(2) with significantly suppre ssed voltage decay and enhanced cycling stability.The strong Nb-O bond can efficiently stabilize the TMO fra mework,and the as prepared material demonstrates much lower discharge midpoint voltage decay(0.132 V) than that of pristine one(0.319 V) after 200 cycles.Consequently,a remarkably improved cycling perfo rmance with a capacity retention of 87.9% after 200 cycle at 0.5 C is achieved,showing a 2.4 fold improvement as compared to the control sample Na_(0.7)Ni_(0.3)Co_(0.1)Mn_(0.6)O_(2)(~37% rotation).Even at 2 C,a capacity retention of 68.4% is retained after 500 cycles.Remarkably,the as prepared material can be applied at low temperature of-20℃,showing a capacity retention of 81% as compared to that at room temperature.展开更多
The voltage decay of lithium-rich layered oxides(LLOs)is still one of the key challenges for their application in commercial battery although these materials possess the advantages of high specific capacity and low co...The voltage decay of lithium-rich layered oxides(LLOs)is still one of the key challenges for their application in commercial battery although these materials possess the advantages of high specific capacity and low cost.In this work,the relationship between voltage decay and tap density of LLOs has been focused.The voltage decay can be significantly suppressed with the increasing tap density as well as the homogenization of the primary or secondary particle size of agglomerated spherical LLOs.Experimental results have shown that an extreme small voltage decay of 0.98 m V cycle^(-1)can be obtained through adjusting the tap density of agglomerated spherical LLOs to 1.99 g cm^(-3),in which the size of primary and secondary particles are uniform.Our work offers a new insight towards the voltage decay and capacity fading of LLOs through precursor preparation process,promoting their application in the real battery in the future.展开更多
Layered Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0 ≤ x ≤(0.08)) cathode materials were successfully synthesized by a sol-gel method. X-ray diffraction and the refinement data indicate that all materials have typ...Layered Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0 ≤ x ≤(0.08)) cathode materials were successfully synthesized by a sol-gel method. X-ray diffraction and the refinement data indicate that all materials have typical α-NaFeO_2 structure with R-3m space group, and the a-axis has almost no change, but there is a slight decrease in the c lattice parameter as well as the cell volume. Scanning electron microscopy and high resolution transmission electron microscopy prove that all the samples have uniform particle size of about 200–300 nm and smooth surface. The energy-dispersive X-ray spectroscopy mapping shows that aluminum has been homogeneously doped in the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2 cathode material. The cyclic voltammetry and electrochemical impedance spectroscopy reveal that appropriate Al-doping contributes to the reversible lithium-ion insertion and extraction, and then reduces the electrochemical polarization and charge transfer resistance. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05)shows the lowest charge transfer resistance and the highest lithium-ion diffusion coefficient among all the samples. The Li-rich electrodes with low-level Al doping shows a much higher discharge capacity than the pristine one, especially the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)AlxO_2(x = 0.05) sample, which exhibits greater rate capacity and better fast charge-discharge performance than the other samples. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05) also exhibits higher discharge capacity than the pristine one at each cycle at 55°C. These results clearly indicate that the high rate capacity together with a good high rate cycling performance and high-temperature performance of the low-Co Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x=0.05) is a promising alternative to next-generation lithium-ion batteries.展开更多
This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests...This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests over the full HCF and VHCF regimes were conducted on superalloy GH3617 M subjected to constant-amplitude loading at five stress ratios of -1, -0.5, 0,0.4, and 0.8 in environments of 20 °C and 700 °C temperatures. From experimental observation and fractographic analysis, fatigue mechanisms were deduced to reveal the synergistic interaction between high temperature and stress ratio on the HCF and VHCF behaviors of superalloy GH3617 M. A phenomenological model was crafted from available fatigue design knowledge to evaluate the synergistic interaction, and a good correlation between predictions and experiments has been achieved.展开更多
基金provided by Technical Education Quality Improvement Programme-Ⅱ(TEQIP-Ⅱ)at MNNIT Allahabad
文摘In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.
基金supported by the National Key R&D Program of China (2016YFB0100301)the National Natural Science Foundation of China (51802020, 51802019)+1 种基金the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Young Elite Scientists Sponsorship Program by CAST (2018QNRC001。
文摘Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.
基金supported by the National Natural Science Foundation of China (51762014)Key Research Project of Natural Science in Universities of Anhui Province (KJ2020A0749)Excellent Young Talents Foundation in Universities of Anhui Province (gxyq2021223).
文摘Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anode material,we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability.The resulting Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) shows the smallest ionic packing factor among Wadsley–Roth niobate materials.Compared with Mg_(2)Nb_(34)O_(87),Mg1.5Ca0.5Nb_(34)O_(87) delivers a 1.6 times faster Liþdiffusivity at-20℃,leading to 56%larger reversible capacity and 1.5 times higher rate capability.Furthermore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) exhibits an 11%smaller maximum unit-cell volume expansion upon lithiation at 60℃,resulting in better cyclic stability;at 10C after 500 cycles,it has a 7.1%higher capacity retention,and its reversible capacity at 10C is 57%larger.Therefore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) is an allclimate anode material capable of working at harsh temperatures,even when its particle sizes are in the order of micrometers.
基金supported by the Department of Science&Technology of Guangdong Province(No.2019ZT08G315)the open foundation of Key Laboratory of Deep Earth Science and Engineering(Sichuan University)+3 种基金Ministry of Education(No.DESE202102)National Natural Science Foundation of China(Nos.41972288,51804203,and 51827901)Applied Basic Research Programs of Sichuan Province(No.2021YJ0411)Shenzhen City Clean Energy Research Institute。
文摘During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are not enough relevant studies at present.Based on this,the thermal damage tests of granite at different temperatures(250,350,450°C)and quenching cycles(1,5,10,15 cycles)were carried out.Preliminary reveals the damage mechanism and heat transfer law of the quenching cycle effect on hot dry rock.The results show that with the increase of temperature and cycles,the uneven thermal expansion of minerals and the thermal shock caused by quenching promote the crack development of granite,resulting in the decrease of P-wave velocity,thermal conductivity and uniaxial compressive strength of granite.Meanwhile,the COMSOL was used to simulate the heat transfer of hot dry rock under different heat treatment conditions.It concluded that the increase in the number of quenching cycles reduced the heat transfer capacity of the granite,especially more than 10 quenching cycles,which also reflects that the thermal fatigue damage leads to a longer time for the temperature recovery of the hot dry rock mass.In addition,the three-dimensional nonlinear fitting relationship among thermal conductivity,temperature and cycle number was established for the first time,which can better reveal the change rule of thermal conductivity after quenching thermal fatigue effect of hot dry rock.The research results provide theoretical support for hot dry rock reservoir reconstruction and production efficiency evaluation.
基金This research is sponsored by the National Natural Science Foundation of China (Grant No. 51971156)National Science and Technology Major Project (Grant No. 2017-VII-0007).
文摘Sc was doped into Gd_(2)Zr_(2)O_(7) for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd_(2)Zr_(2)O_(7) lattice, and the mechanical and thermophysical properties of the doped Gd_(2)Zr_(2)O_(7) were systematically studied by the first-principles method, based on which the Sc doping content was optimized. Additionally, Sc-doped Gd_(2)Zr_(2)O_(7) TBCs with the optimized composition were prepared by air plasma spraying using YSZ as a bottom ceramic coating (Gd-Sc/YSZ TBCs), and their sintering behavior and thermal cycling performance were examined. Results revealed that at low Sc doping levels, Sc has a large tendency to occupy the lattice interstitial sites, and when the doping content is above 11.11 at%, Sc substituting for Gd in the lattice becomes dominant. Among the doped Gd_(2)Zr_(2)O_(7), the composition with 16.67 at% Sc content has the lowest Pugh’s indicator (G/B) and the highest Poisson ratio (σ) indicative of the highest toughness, and the decreasing trends of Debye temperature and thermal conductivity slow down at this composition. By considering the mechanical and thermophysical properties comprehensively, the Sc doping content was optimized to be 16.67 at%. The fabricated Gd-Sc coatings remain phase and structural stability after sintering at 1400 ℃ for 100 h. Gd-Sc/YSZ TBCs exhibit excellent thermal shock resistance, which is related to the good thermal match between Gd-Sc and YSZ coatings, and the buffering effect of the YSZ coating during thermal cycling. These results revealed that Sc-doped Gd_(2)Zr_(2)O_(7) has a high potential for TBC applications, especially for the composition with 16.67 at% Sc content.
基金supported by National Natural Science Foundation of China(Nos.42072300 and 41702291).
文摘Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.
基金the financial supports from the National Natural Science Foundation of China (No.51774251)Hebei Natural Science Foundation for Distinguished Young Scholars (No.B2017203313)+2 种基金Hundred Excellent Innovative Talents Support Program in Hebei Province (No.SLRC2017057)Talent Engineering Training Funds of Hebei Province (No.A201802001)the Opening Project of the State Key Laboratory of Advanced Chemical Power Sources (No. SKL-ACPS-C-11)。
文摘The P2-type manganese-based Na_(0.7)MnO_(2) cathode materials attract great interest due to their high theoretical capacity.However,these materials suffer from rapid capacity fading,poor rate performance and severe voltage decay resulting from phase transition and sluggish reaction kinetics.In this work we report a novel Nb-doped Na_(0.7)[Ni_(0.3)Co_(0.1)Mn_(0.6)]_(1-x)Nb_(x)O_(2) with significantly suppre ssed voltage decay and enhanced cycling stability.The strong Nb-O bond can efficiently stabilize the TMO fra mework,and the as prepared material demonstrates much lower discharge midpoint voltage decay(0.132 V) than that of pristine one(0.319 V) after 200 cycles.Consequently,a remarkably improved cycling perfo rmance with a capacity retention of 87.9% after 200 cycle at 0.5 C is achieved,showing a 2.4 fold improvement as compared to the control sample Na_(0.7)Ni_(0.3)Co_(0.1)Mn_(0.6)O_(2)(~37% rotation).Even at 2 C,a capacity retention of 68.4% is retained after 500 cycles.Remarkably,the as prepared material can be applied at low temperature of-20℃,showing a capacity retention of 81% as compared to that at room temperature.
基金financially supported by the Beijing Natural Science Foundation(JQ19003)National Key R&D Program of China(grant no.2018YFB0104300)+4 种基金National Natural Science Foundation of China(grant no 51622202,21603009,and 21875007)Beijing Natural Science Foundation(B)(KZ201910005002)Beijing Natural Science Foundation(L182009)Project of Youth Talent Plan of Beijing Municipal Education Commission(CIT&TCD201804013)High-grade discipline construction of Beijing(PXM2019-014204-500031)。
文摘The voltage decay of lithium-rich layered oxides(LLOs)is still one of the key challenges for their application in commercial battery although these materials possess the advantages of high specific capacity and low cost.In this work,the relationship between voltage decay and tap density of LLOs has been focused.The voltage decay can be significantly suppressed with the increasing tap density as well as the homogenization of the primary or secondary particle size of agglomerated spherical LLOs.Experimental results have shown that an extreme small voltage decay of 0.98 m V cycle^(-1)can be obtained through adjusting the tap density of agglomerated spherical LLOs to 1.99 g cm^(-3),in which the size of primary and secondary particles are uniform.Our work offers a new insight towards the voltage decay and capacity fading of LLOs through precursor preparation process,promoting their application in the real battery in the future.
基金supported by Anhui Provincial Natural Science Foundation(1508085MB25)the National Natural Science Foundation of China(51274002 and 51404002)+1 种基金Anhui Provincial Science Fund for Excellent Young Scholars(gxyqZD2016066)the Program for Innovative Research Team in Anhui University of Technology(TD201202)
文摘Layered Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(0 ≤ x ≤(0.08)) cathode materials were successfully synthesized by a sol-gel method. X-ray diffraction and the refinement data indicate that all materials have typical α-NaFeO_2 structure with R-3m space group, and the a-axis has almost no change, but there is a slight decrease in the c lattice parameter as well as the cell volume. Scanning electron microscopy and high resolution transmission electron microscopy prove that all the samples have uniform particle size of about 200–300 nm and smooth surface. The energy-dispersive X-ray spectroscopy mapping shows that aluminum has been homogeneously doped in the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2 cathode material. The cyclic voltammetry and electrochemical impedance spectroscopy reveal that appropriate Al-doping contributes to the reversible lithium-ion insertion and extraction, and then reduces the electrochemical polarization and charge transfer resistance. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05)shows the lowest charge transfer resistance and the highest lithium-ion diffusion coefficient among all the samples. The Li-rich electrodes with low-level Al doping shows a much higher discharge capacity than the pristine one, especially the Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)AlxO_2(x = 0.05) sample, which exhibits greater rate capacity and better fast charge-discharge performance than the other samples. Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x = 0.05) also exhibits higher discharge capacity than the pristine one at each cycle at 55°C. These results clearly indicate that the high rate capacity together with a good high rate cycling performance and high-temperature performance of the low-Co Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08-x)Al_xO_2(x=0.05) is a promising alternative to next-generation lithium-ion batteries.
基金supported by the National Natural Science Foundation of China (No. 51875021)
文摘This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests over the full HCF and VHCF regimes were conducted on superalloy GH3617 M subjected to constant-amplitude loading at five stress ratios of -1, -0.5, 0,0.4, and 0.8 in environments of 20 °C and 700 °C temperatures. From experimental observation and fractographic analysis, fatigue mechanisms were deduced to reveal the synergistic interaction between high temperature and stress ratio on the HCF and VHCF behaviors of superalloy GH3617 M. A phenomenological model was crafted from available fatigue design knowledge to evaluate the synergistic interaction, and a good correlation between predictions and experiments has been achieved.