Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni...Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.展开更多
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a hi...Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg...Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.展开更多
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for...The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.展开更多
Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed so...Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.展开更多
Loess internal erosion caused by preferential flow often leads to serious loess ground collapse,shallow loess landslides,and other geological disasters.However,there is a lack of quantitative evaluation of the interna...Loess internal erosion caused by preferential flow often leads to serious loess ground collapse,shallow loess landslides,and other geological disasters.However,there is a lack of quantitative evaluation of the internal erodibility of undisturbed loess under the action of preferential flow,and little is known about the correlation between the internal erodibility of loess and its microstructure.In this study,we carried out a series of hole erosion tests(HET)on undisturbed loess samples from 4 typical locations on China's Loess Plateau.The internal erodibility of loess was quantitatively evaluated through an improved HET method,and its association with initial water content,clay content,and initial water head difference was investigated.On the microscopic scale,the microstructure of loess with different clay content was measured by scanning electron microscopy(SEM).The correlation between pore and particle microstructure parameters and loess internal erosion parameters was established based on grey correlation theory.When the initial water content increased from 10%to 36%,the erodibility index increased from 1 to 2.5.When the clay content increased from 8%to 27.95%,the erodibility index increased 3.5 times.The increase of initial water head difference has a positive linear effect on the internal erodibility of loess.The microstructure analysis shows that with the increase of clay content,the microstructure of undisturbed loess changes from a mosaic structure to a cementation structure,which creates favourable conditions for controlling the internal erosion of loess.Through grey correlation analysis,it has been determined that the microstructure of undisturbed loess has a significant correlation with the critical shear stress,and the loess microstructure morphology strongly correlates with the erosion rate.Under normal circumstances,the higher the clay content,the better the erosion resistance,the better the mechanical stability,and the easier to form a stable cave in loess.This study can provide a reference for revealing the cave formation mechanism in the loess area in the future.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerla...Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.展开更多
The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,...This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill ...Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.展开更多
The design and synthesis of organic high-temperature reversible thermochromic materials is one of the difficult issues in the field of organic chromic materials.In this paper,four diacetylene monomers named DBA-PCDA,T...The design and synthesis of organic high-temperature reversible thermochromic materials is one of the difficult issues in the field of organic chromic materials.In this paper,four diacetylene monomers named DBA-PCDA,TBA-PCDA,DBE-PCDA and TBE-PCDA,each containing multiple diacetylene units,were synthesized from 10,12-pentacosadiynoic acid(PCDA)through the amidation or esterification reactions,using 4,4'-diaminobiphenyl,1,3,5-tris(4-aminophenyl)benzene,4,4'-dihydroxybiphenyl,and 1,3,5-tris(4-hydroxyphenyl)benzene as bridging units.The effects of functional groups that can form hydrogen bond andπ-πinteractions on the solid-state polymerization properties of monomers and the thermochromic properties of the corresponding PDAs were investigated.The results show that only DBA-PCDA and TBAPCDA,which contain functional groups that can form hydrogen bonding interactions,can be polymerized under 254-nm UV irradiation.The corresponding poly(DBA-PCDA)exhibits reversible thermochromic property even heated up to 200℃,showing a potential application in the field of high-temperature thermal indicator above 100℃.This work provides a new perspective to the development of PDA with high-temperature reversible thermochromic property.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el...Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.展开更多
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu...Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.展开更多
aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This stud...aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.展开更多
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(20231120171032001)the National Natural Science Foundation of China(No.52242305).
文摘Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.
基金funded by National Natural Science Foundation of China(No.U20A20308,52177017 and 51977050)Heilongjiang Province Natural Science Foundation of China(No.ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020177)
文摘Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金the financial support received from the University Grants Commission (UGC) in the form of a Junior Research Fellowship (JRF)。
文摘Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.
基金supported by the Natural Science Foundation of Qinghai Province(Grant No.2024-ZJ-987).
文摘The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.
基金supported by the National Natural Scienceof China (No.52175208)Scientific Research and Technology Development Project of CNPC (No.2023ZZ11)+1 种基金Fundamental Research and Strategic Reserve Technology Research Fund Project of CNPC (No.2023DQ03-03)Study on Key Technologies of Production Increase and Transformation of Gulong Shale Oil (2021ZZ10-04)。
文摘Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.
基金funded by the Natural Science Foundation of China(Grants No.42041006,42377158,42377163)and the Provincial Key R&D Project(211426230324).
文摘Loess internal erosion caused by preferential flow often leads to serious loess ground collapse,shallow loess landslides,and other geological disasters.However,there is a lack of quantitative evaluation of the internal erodibility of undisturbed loess under the action of preferential flow,and little is known about the correlation between the internal erodibility of loess and its microstructure.In this study,we carried out a series of hole erosion tests(HET)on undisturbed loess samples from 4 typical locations on China's Loess Plateau.The internal erodibility of loess was quantitatively evaluated through an improved HET method,and its association with initial water content,clay content,and initial water head difference was investigated.On the microscopic scale,the microstructure of loess with different clay content was measured by scanning electron microscopy(SEM).The correlation between pore and particle microstructure parameters and loess internal erosion parameters was established based on grey correlation theory.When the initial water content increased from 10%to 36%,the erodibility index increased from 1 to 2.5.When the clay content increased from 8%to 27.95%,the erodibility index increased 3.5 times.The increase of initial water head difference has a positive linear effect on the internal erodibility of loess.The microstructure analysis shows that with the increase of clay content,the microstructure of undisturbed loess changes from a mosaic structure to a cementation structure,which creates favourable conditions for controlling the internal erosion of loess.Through grey correlation analysis,it has been determined that the microstructure of undisturbed loess has a significant correlation with the critical shear stress,and the loess microstructure morphology strongly correlates with the erosion rate.Under normal circumstances,the higher the clay content,the better the erosion resistance,the better the mechanical stability,and the easier to form a stable cave in loess.This study can provide a reference for revealing the cave formation mechanism in the loess area in the future.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
基金Supported by National Natural Science Foundation of China(No.82271119)Shanghai Rising-Star Program(No.23QA1401000)+1 种基金Healthy Young Talents Project of Shanghai Municipal Health Commission(No.2022YQ015)Project of Shanghai Science and Technology(No.21Y11909800).
文摘Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.
文摘The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金supported by the Key R&D Program of Shandong Province of China(Grant number 2019QYTPY057)the Natural Science Foundation of Shandong Province of China(Grant numbers ZR2020ME110,ZR2021ME023)。
文摘This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
文摘Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.
基金supported by the National Natural Science Foundation of China(No.51973205)the Fundamental Research Funds for the Central Universities(Nos.WK9110000066,WK3450000005 and WK3450000006)。
文摘The design and synthesis of organic high-temperature reversible thermochromic materials is one of the difficult issues in the field of organic chromic materials.In this paper,four diacetylene monomers named DBA-PCDA,TBA-PCDA,DBE-PCDA and TBE-PCDA,each containing multiple diacetylene units,were synthesized from 10,12-pentacosadiynoic acid(PCDA)through the amidation or esterification reactions,using 4,4'-diaminobiphenyl,1,3,5-tris(4-aminophenyl)benzene,4,4'-dihydroxybiphenyl,and 1,3,5-tris(4-hydroxyphenyl)benzene as bridging units.The effects of functional groups that can form hydrogen bond andπ-πinteractions on the solid-state polymerization properties of monomers and the thermochromic properties of the corresponding PDAs were investigated.The results show that only DBA-PCDA and TBAPCDA,which contain functional groups that can form hydrogen bonding interactions,can be polymerized under 254-nm UV irradiation.The corresponding poly(DBA-PCDA)exhibits reversible thermochromic property even heated up to 200℃,showing a potential application in the field of high-temperature thermal indicator above 100℃.This work provides a new perspective to the development of PDA with high-temperature reversible thermochromic property.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金financialy supported by the National Natural Science Foundation of China(nos.22078069,22178069,51903254)
文摘Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.
基金The authors extend their appreciation to Researchers Supporting Project number(RSP2024R390),King Saud University,Riyadh,Saudi Arabia.
文摘Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.
基金supported by the Third Xinjiang Scientific Expedition and Research Program (Grant No. 2022xjkk0602)National Cryosphere Desert Data Center (No. 2021kf02)Xinjiang Jiaotou’s Unveiling and Commanding System Project in 2021 (ZKXFWCG 2022060004)。
文摘aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.