A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element metho...Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.展开更多
Researches on solids mixing and segregation are of great significance for the operation and design of fluidized bed reactors.In this paper,the local and global mixing and segregation characteristics of binary mixtures...Researches on solids mixing and segregation are of great significance for the operation and design of fluidized bed reactors.In this paper,the local and global mixing and segregation characteristics of binary mixtures were investigated in a gas–solid fluidized bed by computational fluid dynamics-discrete element method(CFD-DEM)coupled approach.A methodology based on solids mixing entropy was developed to quantitatively calculate the mixing degree and time of the bed.The mixing curves of global mixing entropy were acquired,and the distribution maps of local mixing entropy and mixing time were also obtained.By comparing different operating conditions,the effects of superficial gas velocity,particle density ratio and size ratio on mixing/segregation behavior were discussed.Results showed that for the partial mixing state,the fluidized bed can be divided into three parts along the bed height:complete segregation area,transition area and stable mixing area.These areas showed different mixing/segregation processes.Increasing gas velocity promoted the local and global mixing of binary mixtures.The increase in particle density ratio and size ratio enlarged the complete segregation area,reduced the mixing degree and increased the mixing time in the stable mixing area.展开更多
The particle flow pattern, mixing and granule segregation in a tapered fluidized bed have been studied along with the hydrodynamics. At first the bed of varying total mass and granule fractions is fluidized then the b...The particle flow pattern, mixing and granule segregation in a tapered fluidized bed have been studied along with the hydrodynamics. At first the bed of varying total mass and granule fractions is fluidized then the bed is defluidized to freeze the composition, the bed is sectioned to layers and the composition in each layer is determined by sieving. Materials used in the present study are dolomite and glass beads with different B.S.S Sizes. A series of unsteady, three fluid CFD simulations were performed using FLUENTTM 6.2. Simulation parameters viz. solution technique, grid, maximum packing fraction and operating conditions like gas velocity were investigated for relative effects on particle mixing and segregation. Good arrangement of solid volume fraction profile was obtained between the experimental results and simulation results for regular particles.展开更多
The current separator with air dense medium fluidized bed can only turn out two products at the same time with a single separating density. The double density fluidized bed means that two separating areas with differe...The current separator with air dense medium fluidized bed can only turn out two products at the same time with a single separating density. The double density fluidized bed means that two separating areas with different densities are formed in a fluidized cascade. In each separating area, the bed density is uniform and meets the technical requirement of coal preparation respectively. Therefore, the processed materials can be separated into three products according to density. In this paper, the fluidized behaviors of binary dense media were experimentally studied and the distribution characteristics of particle concentration and bed density in different bed structure were discussed. The segregation and mixing mechanisms of binary dense media were analyzed. It was testified that the pyramidal part designed in the bed structure played a key role in the formation of double density fluidized bed. The pyramidal part intensified the segregation of binary particles between two separating areas and strengthened the mixing in the low density area, which made for the density uniform of the area.展开更多
The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in ...The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in both risers and downers.When the flow is in the direction ofgravity(downer),the radial profiles of gas and particle velocity are more uniform than that inthe riser,the solids mixing is very small and the flow pattern approaches plug flow,while theflow is against gravity(riser),the solids backmixing significantly increase and the flow pattern isfar from plug flow.Among many of factors the flow direction has the largest influence onhydrodynamics and axial mixing of gas and solids.展开更多
麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDE...麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDEM离散元方法结合研究非连续体麦秸秆-土壤混合物之间相互作用,选用Bonding V2黏结模型搭建柔性麦秸秆段“元颗粒”,选取Hertz-Mindlin with JKR模型对一定湿度的土壤进行参数标定。首先,以圆桶提升麦秸秆和土壤种床混合物堆积角为响应值,采用Plackett-Burman筛选试验和最陡爬坡试验分别对显著影响因素从大到小排序和缩近最佳取值范围。利用Box-Behnken试验构建了显著影响因素与堆积角二阶回归模型,对显著因素交互项进行响应曲面分析,利用Design-Expert软件优化模型并以实测堆积角39.94°为目标响应值,计算得土壤JKR表面能0.500、土壤-秸秆动摩擦系数0.065 8、土壤-秸秆JKR表面能0.262及土壤-土壤动摩擦系数0.155,仿真验证误差1.08%,表明标定的接触模型参数可靠。该研究可为麦-玉保护性耕作模型下混合种床与机具精密播种相互作用研究提供参考和理论依据。展开更多
Conical spouted beds operating with high-density particles(ρp>2500 kg/m^(3))have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors.In the literat...Conical spouted beds operating with high-density particles(ρp>2500 kg/m^(3))have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors.In the literature,the number of axial gas mixing studies in conical and conical-cylindrical spouted beds is very limited and all axial mixing studies were carried out with relatively light particles(ρp≤2500 kg/m^(3)).Therefore,the objective of this study was to generate experimental data that can be used to explain the gas axial mixing behavior in conical spouted beds operating with both low-and high-density particles.Experiments were conducted in two(γ=30°,60°)conical spouted beds with three different types of particles:zirconia(ρp=6050 kg/m^(3)),zirconia toughened alumina(ρp=3700 kg/m^(3))and glass beads(ρp=2460 kg/m^(3)).In order to be able to compare experimental data obtained at different conditions,a 1-D convection-diffusion gas mixing model originally developed by San Joséet al.(1995)was implemented to determine the axial dispersion coefficients.The results show that the axial dispersion coefficients range between m^(2)/s and m^(2)/s,increase with superficial gas velocity and are higher than the corresponding dispersion coefficients of fixed beds,lower than the dispersion coefficients of fluidized beds and in the same range with the cylindrical spouted beds reported in the literature.The corresponding Peclet numbers were in the range of 0.6–7.8 for all operating conditions and slightly higher Peclet numbers were obtained with glass beads indicating the relative importance of gas convective transport over gas dispersion for light particles compared to heavy particles.展开更多
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug...Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.展开更多
A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population ba...A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population balance,mass balance and crystallization kinetics.It predicted well the influence of coalescence prob-ability,which represents the mixing intensity among droplets,on the particle number density,supersaturation and mean particle size of the produced precipitates.The effects of the radial thickness of packing,liquid flow rate and rotating speed on the product particle size were also investigated.The results indicate that the needed radial length of packing is short for sparingly soluble substance precipitation(about 40-50 mm in this work) ,and the mean parti-cle size of precipitates decreases with the increase of rotating speed and liquid flow rate,respectively.The validity of this model was verified by experiment on BaSO4 precipitation in RPB.展开更多
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
基金Projects(5137424151275531)supported by the National Natural Science Foundation of ChinaProject(CX2014B059)supported by the Innovation Foundation for Postgraduate of Hunan Province,China
文摘Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.
基金supported by the National Key Research and Development Program of China(2020YFA0714400)the National Nature Science Foundation of China(51925602,51888103)。
文摘Researches on solids mixing and segregation are of great significance for the operation and design of fluidized bed reactors.In this paper,the local and global mixing and segregation characteristics of binary mixtures were investigated in a gas–solid fluidized bed by computational fluid dynamics-discrete element method(CFD-DEM)coupled approach.A methodology based on solids mixing entropy was developed to quantitatively calculate the mixing degree and time of the bed.The mixing curves of global mixing entropy were acquired,and the distribution maps of local mixing entropy and mixing time were also obtained.By comparing different operating conditions,the effects of superficial gas velocity,particle density ratio and size ratio on mixing/segregation behavior were discussed.Results showed that for the partial mixing state,the fluidized bed can be divided into three parts along the bed height:complete segregation area,transition area and stable mixing area.These areas showed different mixing/segregation processes.Increasing gas velocity promoted the local and global mixing of binary mixtures.The increase in particle density ratio and size ratio enlarged the complete segregation area,reduced the mixing degree and increased the mixing time in the stable mixing area.
文摘The particle flow pattern, mixing and granule segregation in a tapered fluidized bed have been studied along with the hydrodynamics. At first the bed of varying total mass and granule fractions is fluidized then the bed is defluidized to freeze the composition, the bed is sectioned to layers and the composition in each layer is determined by sieving. Materials used in the present study are dolomite and glass beads with different B.S.S Sizes. A series of unsteady, three fluid CFD simulations were performed using FLUENTTM 6.2. Simulation parameters viz. solution technique, grid, maximum packing fraction and operating conditions like gas velocity were investigated for relative effects on particle mixing and segregation. Good arrangement of solid volume fraction profile was obtained between the experimental results and simulation results for regular particles.
文摘The current separator with air dense medium fluidized bed can only turn out two products at the same time with a single separating density. The double density fluidized bed means that two separating areas with different densities are formed in a fluidized cascade. In each separating area, the bed density is uniform and meets the technical requirement of coal preparation respectively. Therefore, the processed materials can be separated into three products according to density. In this paper, the fluidized behaviors of binary dense media were experimentally studied and the distribution characteristics of particle concentration and bed density in different bed structure were discussed. The segregation and mixing mechanisms of binary dense media were analyzed. It was testified that the pyramidal part designed in the bed structure played a key role in the formation of double density fluidized bed. The pyramidal part intensified the segregation of binary particles between two separating areas and strengthened the mixing in the low density area, which made for the density uniform of the area.
基金Supported by the National Natural Science Foundation of China and Tsinghua University Foundation.
文摘The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in both risers and downers.When the flow is in the direction ofgravity(downer),the radial profiles of gas and particle velocity are more uniform than that inthe riser,the solids mixing is very small and the flow pattern approaches plug flow,while theflow is against gravity(riser),the solids backmixing significantly increase and the flow pattern isfar from plug flow.Among many of factors the flow direction has the largest influence onhydrodynamics and axial mixing of gas and solids.
文摘麦-玉一年两熟的江淮、黄淮地区秸秆混土还田保护性耕作模式,麦秸秆-土壤混合的种床缺乏准确的物料相互接触参数,阻碍了机械化玉米精密播种过程中关键部件、种粒、肥料与混合种床相互作用研究,进而制约了机具优化与改进。采用物理与EDEM离散元方法结合研究非连续体麦秸秆-土壤混合物之间相互作用,选用Bonding V2黏结模型搭建柔性麦秸秆段“元颗粒”,选取Hertz-Mindlin with JKR模型对一定湿度的土壤进行参数标定。首先,以圆桶提升麦秸秆和土壤种床混合物堆积角为响应值,采用Plackett-Burman筛选试验和最陡爬坡试验分别对显著影响因素从大到小排序和缩近最佳取值范围。利用Box-Behnken试验构建了显著影响因素与堆积角二阶回归模型,对显著因素交互项进行响应曲面分析,利用Design-Expert软件优化模型并以实测堆积角39.94°为目标响应值,计算得土壤JKR表面能0.500、土壤-秸秆动摩擦系数0.065 8、土壤-秸秆JKR表面能0.262及土壤-土壤动摩擦系数0.155,仿真验证误差1.08%,表明标定的接触模型参数可靠。该研究可为麦-玉保护性耕作模型下混合种床与机具精密播种相互作用研究提供参考和理论依据。
基金This work was carried out with the financial support of the Scientific and Technological Research Council of Turkey(Project No:MAG 115M392)。
文摘Conical spouted beds operating with high-density particles(ρp>2500 kg/m^(3))have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors.In the literature,the number of axial gas mixing studies in conical and conical-cylindrical spouted beds is very limited and all axial mixing studies were carried out with relatively light particles(ρp≤2500 kg/m^(3)).Therefore,the objective of this study was to generate experimental data that can be used to explain the gas axial mixing behavior in conical spouted beds operating with both low-and high-density particles.Experiments were conducted in two(γ=30°,60°)conical spouted beds with three different types of particles:zirconia(ρp=6050 kg/m^(3)),zirconia toughened alumina(ρp=3700 kg/m^(3))and glass beads(ρp=2460 kg/m^(3)).In order to be able to compare experimental data obtained at different conditions,a 1-D convection-diffusion gas mixing model originally developed by San Joséet al.(1995)was implemented to determine the axial dispersion coefficients.The results show that the axial dispersion coefficients range between m^(2)/s and m^(2)/s,increase with superficial gas velocity and are higher than the corresponding dispersion coefficients of fixed beds,lower than the dispersion coefficients of fluidized beds and in the same range with the cylindrical spouted beds reported in the literature.The corresponding Peclet numbers were in the range of 0.6–7.8 for all operating conditions and slightly higher Peclet numbers were obtained with glass beads indicating the relative importance of gas convective transport over gas dispersion for light particles compared to heavy particles.
基金financially supported by the Natural Science Foundations of China(No.21206153,21376229)the Excellent Youth Science and Technology Foundation of Province Shanxi of China(No.2014021007)+1 种基金the Natural Science Foundation of Shanxi Province(Grant No.2011021012,2012011008-2)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(201316)
文摘Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.
基金Supported by the National Natural Science Foundation of China(20821004 20325621) Beijing Municipal Commission of Education(JD100100403)
文摘A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population balance,mass balance and crystallization kinetics.It predicted well the influence of coalescence prob-ability,which represents the mixing intensity among droplets,on the particle number density,supersaturation and mean particle size of the produced precipitates.The effects of the radial thickness of packing,liquid flow rate and rotating speed on the product particle size were also investigated.The results indicate that the needed radial length of packing is short for sparingly soluble substance precipitation(about 40-50 mm in this work) ,and the mean parti-cle size of precipitates decreases with the increase of rotating speed and liquid flow rate,respectively.The validity of this model was verified by experiment on BaSO4 precipitation in RPB.