Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi...Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unb...In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by c...Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by changing the curing and pyrolysis conditions. And the free carbon content and the ability to crystallize no longer affect the specific resistivities notably with the time when the fiber is covered with an excess carbon layer, and the fiber has a low specific resistivity. The excess carbon layer in the circular outer part is originated from the re-pyrolysis and deposition of hydrocarbon volatiles. The removal of the carbon by oxidative treatment may affect the surface property and also promote the magnitude of specific resistivity. The influence of the surface property on the specific resistivity can be considerable and should not be neglected.展开更多
The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on t...The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃.展开更多
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive...Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge f...The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge factor (fractional change in resistance per unit strain) of PAN-based carbon fibers is 1.38, which is lower than that of the commonly-used resistance strain gauge. These may due to that the electrical resistivity of carbon fibers decreases under tensile stress. In addition when the carbon fibers are stretched, the change of its resistance is caused by fiber physical dimension and the change of electric resistivity, and mainly caused by the change of physical dimension. The mechanical properties of carbon fiber monofilament were also measured.展开更多
Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution ...Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.展开更多
The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechan...The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechanism of alkali-resistant glass fiber was studied. The interaction mechanisms of the chemical erosion and physical injury in different curing conditions were studied in order to summarize the damage mechanism of alkali-resistant glass fiber in cement-based materials, and chloride diffusivity coefficient and porosity of cement mortar were tested in the different curing conditions. The experimental results are that the strength of cement based materials and fiber cement slurry interface zone were closely related, and heat curing could accelerate the hydration of cement, but inevitably enlarge the defect.展开更多
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin...[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.展开更多
High-entropy diborides(HEBs)are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability.However,the intrinsic brittleness is the main obstacle tha...High-entropy diborides(HEBs)are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability.However,the intrinsic brittleness is the main obstacle that seriously limits their practical applications.To overcome with this obstacle,carbon fibers(Cf)with outstanding mechanical properties are used in the present work as a first attempt to improve the damage tolerance of HEBs.The as-prepared C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite(C_(f)/HEB–SiC)shows high relative density(97.9%)and good mechanical properties with flexural strength of 411±3 MPa and fracture toughness of 6.15±0.11 MPa·m^(1/2).More importantly,the damage tolerance parameter(Dt)has increased from 0.10 m^(1/2) for HEB–SiC to 0.29 m^(1/2) for C_(f)/HEB–SiC.Through microstructural analysis and Vickers indentation of the composite,the toughening mechanisms are disclosed.The carbon fibers coated with carbon coatings demonstrate unique capacity for prolonging the crack propagation path,which promotes the reliability of the composite effectively.Moreover,the C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite also exhibits good static oxidation resistance in the temperature range of 1100–1500℃in air due to the formation of the protective oxide layer constituting of multicomponent oxides(Zr)HfTiO4 and(Zr)Hf_(6)Ta_(2)O_(17) embedded in a continuous SiO_(2) glass.These results are promising,and this primary work can be used as a reference to the synthesis of C_(f)/HEBs for thermal protection materials under hightemperature serving conditions.展开更多
Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers,...Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers, and sintering of the cured products. The results show that the average diameter and tensile strength of continuous Si-Al-C fibers are 11 to 12 μm and 1.8 to 2.0 GPa, respectively. The chemical formula of Si-Al-C fibers is SiC1.01O0.0400Al0.024, which is nearly stoichometric. The fibers are mainly composed of β-SiC crystalline, small amount of α-SiC, and amorphous SiC. Continuous Si-Al-C fibers exhibit excellent thermal stability. When the fibers were exposed in argon for 1 h, the tensile strength did not decrease until 1500°C. After heat treatment at 1800°C in argon for 1 h, the fibers maintained about 80% of the initial strength. It was higher than that of Nicalon and Hi-Nicalon fibers.展开更多
This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-roote...This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-rooted mandibular premolars were randomized into five groups.Each group was prepared according to numbers of residual walls ranged from 0 to 4.Then each group was divided into two subgroups with one restored with quartz fiber posts and the other without posts.In no-post groups,gutta percha point 2 mm below cemento-enamel junction was removed.Composite resin was adapted to the well and used to shape the core directly.Each tooth was restored with a complete metal crown.Dynamic loading was carried out in a masticatory simulator with a nominal load of 50 N at 2 Hz for 300 000 loading cycles.Then a quasi-statically load was applied in a universal testing machine 306 to the long axis with a crosshead speed of 1 mm?min21until fracture.Data were analyzed with one-way analysis of variance and pairwise comparison(P,0.05).No specimens failed during dynamic loading.The fracture resistance enhanced with the increase of numbers of coronal walls and the differences were significant(P,0.05).Placement of fiber posts had a significant effect when fewer than two walls remained(P,0.05),but it had no significant influence in groups with two,three or four walls(P.0.05).Fiber post did not change failure mode,and the fracture pattern was mainly favorable.More dentin walls need to be retained in clinic.When no less than two walls remained,a fiber post is not always necessary.展开更多
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf...Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.展开更多
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ...Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.展开更多
To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used t...To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used to investigate the corrosive resistance of basalt fiber, meanwhile, surface study by scanning electron microscopy and microanalysis with complementary X-ray diffraction analysis (SEM/EDS) was also used to ascertain the durability of basalt fiber. The basalt fiber showed better strength retention than the glass fiber at relatively high temperature. Its tensile strength increased when exposed at 300 ~C for several hours, and still maintain about 70% of the initial strength at 400 ~C, whereas that of the glass fiber decreased dramatically. The better stability of the basalt fiber was observed in hydrothermal and chemical environment. The tensile strength of the basalt fiber increased by 20% after the immersion in boiling water and remained well in acid solution, when it comes to glass fiber, the tensile strength decreased to some extent. Although the alkali resistance of basalt fiber was poor at the initial stage, it shows better resistance than the glass fiber after long time treatment.展开更多
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金Supported by the National Natural Science Foundation of China(52288101).
文摘Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金Sponsored by the Changjiang Scholars Program of China(Grant No.2009-37)the National Natural Science Foundation of China(Grant No.50678050)
文摘In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
文摘Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by changing the curing and pyrolysis conditions. And the free carbon content and the ability to crystallize no longer affect the specific resistivities notably with the time when the fiber is covered with an excess carbon layer, and the fiber has a low specific resistivity. The excess carbon layer in the circular outer part is originated from the re-pyrolysis and deposition of hydrocarbon volatiles. The removal of the carbon by oxidative treatment may affect the surface property and also promote the magnitude of specific resistivity. The influence of the surface property on the specific resistivity can be considerable and should not be neglected.
基金Funded by the Joint Fund of Ministry of Education for Equipment Pre-research(No.6141A02022250)the Fundamental Research Funds for the Central Universities,China(No.WUT:2021III003XZ)。
文摘The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃.
基金Funded by the National Natural Science Foundation of China(No.50678050)
文摘Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
基金Funded by the National Natural Science Foundation of China (No.10672128 and 50878170)
文摘The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge factor (fractional change in resistance per unit strain) of PAN-based carbon fibers is 1.38, which is lower than that of the commonly-used resistance strain gauge. These may due to that the electrical resistivity of carbon fibers decreases under tensile stress. In addition when the carbon fibers are stretched, the change of its resistance is caused by fiber physical dimension and the change of electric resistivity, and mainly caused by the change of physical dimension. The mechanical properties of carbon fiber monofilament were also measured.
基金Funded by the Natural Science Foundation of Hubei Province (No.2007ABA028)
文摘Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.
基金Funded by the National Natural Science Foundation of China(Nos.51009015and50872015)the Education Foundation of Liaoning Province(No.L2010038)
文摘The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechanism of alkali-resistant glass fiber was studied. The interaction mechanisms of the chemical erosion and physical injury in different curing conditions were studied in order to summarize the damage mechanism of alkali-resistant glass fiber in cement-based materials, and chloride diffusivity coefficient and porosity of cement mortar were tested in the different curing conditions. The experimental results are that the strength of cement based materials and fiber cement slurry interface zone were closely related, and heat curing could accelerate the hydration of cement, but inevitably enlarge the defect.
基金Supported by Sichuan Provincial International S&T Cooperation Program(No.2008HH0012)Cooperation Research Program of Sichuan University and Hitachi Company(No.07H372)~~
文摘[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52172075 and 52302074)the Outstanding Youth Foundation of Henan Province(Grant No.202300410355)+4 种基金the Program for Innovative Research Team in Science and Technology in Universities of Henan Province(Grant No.23IRTSTHN001)the China Postdoctoral Science Foundation(Grant No.2021M702931)the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(Grant No.JCKYS2022603C024)the Natural Science Foundation of Henan Province(Grant No.232300421323)the Henan Provincial Science and Technology Research and Development Plan Joint Fund(Grant No.222301420031).
文摘High-entropy diborides(HEBs)are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability.However,the intrinsic brittleness is the main obstacle that seriously limits their practical applications.To overcome with this obstacle,carbon fibers(Cf)with outstanding mechanical properties are used in the present work as a first attempt to improve the damage tolerance of HEBs.The as-prepared C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite(C_(f)/HEB–SiC)shows high relative density(97.9%)and good mechanical properties with flexural strength of 411±3 MPa and fracture toughness of 6.15±0.11 MPa·m^(1/2).More importantly,the damage tolerance parameter(Dt)has increased from 0.10 m^(1/2) for HEB–SiC to 0.29 m^(1/2) for C_(f)/HEB–SiC.Through microstructural analysis and Vickers indentation of the composite,the toughening mechanisms are disclosed.The carbon fibers coated with carbon coatings demonstrate unique capacity for prolonging the crack propagation path,which promotes the reliability of the composite effectively.Moreover,the C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite also exhibits good static oxidation resistance in the temperature range of 1100–1500℃in air due to the formation of the protective oxide layer constituting of multicomponent oxides(Zr)HfTiO4 and(Zr)Hf_(6)Ta_(2)O_(17) embedded in a continuous SiO_(2) glass.These results are promising,and this primary work can be used as a reference to the synthesis of C_(f)/HEBs for thermal protection materials under hightemperature serving conditions.
基金the National Natural Science Foundation of China (Grant No. 59972042)
文摘Using polymer-derived technology, continuous high-temperature resistant Si-Al-C fibers were prepared by one step method, which included melt-spinning of polyaluminocarbosilane (PACS), curing of continuous PACS fibers, and sintering of the cured products. The results show that the average diameter and tensile strength of continuous Si-Al-C fibers are 11 to 12 μm and 1.8 to 2.0 GPa, respectively. The chemical formula of Si-Al-C fibers is SiC1.01O0.0400Al0.024, which is nearly stoichometric. The fibers are mainly composed of β-SiC crystalline, small amount of α-SiC, and amorphous SiC. Continuous Si-Al-C fibers exhibit excellent thermal stability. When the fibers were exposed in argon for 1 h, the tensile strength did not decrease until 1500°C. After heat treatment at 1800°C in argon for 1 h, the fibers maintained about 80% of the initial strength. It was higher than that of Nicalon and Hi-Nicalon fibers.
文摘This study aimed to evaluate the influence of quartz fiber post placement on the fracture resistance of endodontically treated premolars with different dental defects under dynamic loading.Fifty extracted single-rooted mandibular premolars were randomized into five groups.Each group was prepared according to numbers of residual walls ranged from 0 to 4.Then each group was divided into two subgroups with one restored with quartz fiber posts and the other without posts.In no-post groups,gutta percha point 2 mm below cemento-enamel junction was removed.Composite resin was adapted to the well and used to shape the core directly.Each tooth was restored with a complete metal crown.Dynamic loading was carried out in a masticatory simulator with a nominal load of 50 N at 2 Hz for 300 000 loading cycles.Then a quasi-statically load was applied in a universal testing machine 306 to the long axis with a crosshead speed of 1 mm?min21until fracture.Data were analyzed with one-way analysis of variance and pairwise comparison(P,0.05).No specimens failed during dynamic loading.The fracture resistance enhanced with the increase of numbers of coronal walls and the differences were significant(P,0.05).Placement of fiber posts had a significant effect when fewer than two walls remained(P,0.05),but it had no significant influence in groups with two,three or four walls(P.0.05).Fiber post did not change failure mode,and the fracture pattern was mainly favorable.More dentin walls need to be retained in clinic.When no less than two walls remained,a fiber post is not always necessary.
基金The project was financially supported by The Space Foundation of Supporting-Technology of China (No. 2002EK1803)the Graduate Starting Seed Fund of Northwestern Polytechnical University (No. W016663)
文摘Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.
基金Enterprise Research and Development Project of Beijing Lirr High-Temperature Materials Co.,Ltd.(2020-02)Key Scientific Research Project for Universities and Colleges in Henan Province(19A430028)+1 种基金the Excellent Youth Research Project of Anhui Province(2022AH030135)the PhD Research Funding of Suzhou University(2021BSK041).
文摘Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.
文摘To study the applicability of the basalt fiber through various experimental works in thermal and chemical environments, glass fiber and carbon fiber were compared and discussed. The tensile strength testing was used to investigate the corrosive resistance of basalt fiber, meanwhile, surface study by scanning electron microscopy and microanalysis with complementary X-ray diffraction analysis (SEM/EDS) was also used to ascertain the durability of basalt fiber. The basalt fiber showed better strength retention than the glass fiber at relatively high temperature. Its tensile strength increased when exposed at 300 ~C for several hours, and still maintain about 70% of the initial strength at 400 ~C, whereas that of the glass fiber decreased dramatically. The better stability of the basalt fiber was observed in hydrothermal and chemical environment. The tensile strength of the basalt fiber increased by 20% after the immersion in boiling water and remained well in acid solution, when it comes to glass fiber, the tensile strength decreased to some extent. Although the alkali resistance of basalt fiber was poor at the initial stage, it shows better resistance than the glass fiber after long time treatment.