期刊文献+
共找到542篇文章
< 1 2 28 >
每页显示 20 50 100
High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures 被引量:1
1
作者 ZHANG Kezhao LEI Zhenglong +3 位作者 CHEN Yanbin YAN Chunyan FU Qiang BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1116-1121,共6页
The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation seque... The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation sequence of Ti2AlNb-based alloys.At temperatures lower than the B2+O phase field (500 ℃) and higher than the B2+O phase field (1 000 ℃),the joints fracture in the base metal in ductile fracture mode.By contrast,the joints exhibit obvious high-temperature brittleness in the B2+O phase field (650 °C and 800 ℃).Heat treatments were conducted with respect to the thermal history of tensile specimens.Intergranular microcracks along the grain boundary of B2 phase are found in the fusion zone after the heat treatments at 650 ℃ and 800 ℃.The high-temperature brittleness at 650 ℃ and 800 ℃ is attributed to the B2→O transformation along the grain boundary.The stress concentration caused by the volume change of B2→O transformation also contributes to the high-temperature brittleness of laser welded Ti-22Al-25Nb joints. 展开更多
关键词 high-temperature tensile behavior laser welding Ti2AlNb-based alloys phase transformation
下载PDF
Effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-Gd-Y-Zr alloy 被引量:4
2
作者 林丹 王磊 +2 位作者 刘杨 崔建忠 乐启炽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2160-2167,共8页
The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal ... The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal defects caused by the plastic deformation,as well as increasing the amount of β' phases,and the formation of precipitations at grain boundaries and interfaces between the twins and matrix.Because of an increase in precipitations,the dislocation slipping during deformation process is effectively hindered and the matrix is strengthened,especially for the 2% deformed alloy which can achieve a good combination of strength and ductility.With increasing the plastic deformation,the microcracks occur at the interface between grain boundary precipitations and matrix,and then propagate intergranularly.When intergranular fracture combines with the formation of smoothing facets on the fracture surface,the tensile properties decrease. 展开更多
关键词 Mg-Gd-Y-Zr alloy plastic deformation fracture behavior tensile property MICROSTRUCTURE
下载PDF
Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process 被引量:17
3
作者 Tong Wen Li Wei Xia Chen Chun-lei Pei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第1期70-76,共7页
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to... An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples. 展开更多
关键词 ultrasonic effects tensile testing magnesium alloys plastic deformation
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
4
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
On the intergranular fracture behavior of high-temperature plastic deformation of 1420 Al-Li alloy
5
作者 TANGAitao WANGLingyun +1 位作者 LIUXuefeng HUANGGuangjie 《Rare Metals》 SCIE EI CAS CSCD 2002年第1期67-73,共7页
The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃ and the strain rate range from 0.01 to l0... The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃ and the strain rate range from 0.01 to l0.0s-1.The tensile fracture behavior of the 1420 Al-Li alloy at high temperature was studied experimently. The results show that the tensile fracture mode of the 1420 Al-Li alloy at high temperature is changed from typical transgranular ductile fracture to intergranular brittle fracture with the increase of the deformation temperature and the strain rate. It is made out that the precipitation of LiH is the fundamental reason for the intergranular brittle fracture of the 1420 Al-Li alloy at high temperature. The mechanism of hydrogen embrittlement of the 1420 Al-Li alloy at high temperature was discussed, and it was proposed that the hydrogen embrittlement at high temperature is an integrated function of the dynamic and the static force, which enrichs the theories of hydrogen embrittlemen t. 展开更多
关键词 Al-Li alloy high-temperature plastic deformation hydrogen embrittlement intergranular fracture
下载PDF
Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation 被引量:9
6
作者 XIE Zhen-dong GUAN Yan-jin +2 位作者 YU Xiao-hui ZHU Li-hua LIN Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1545-1559,共15页
Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried ou... Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy. 展开更多
关键词 ultrasonic vibration tensile test AZ31 magnesium alloy plastic behavior MICROSTRUCTURE
下载PDF
Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress 被引量:3
7
作者 李桂荣 薛飞 +4 位作者 王宏明 郑瑞 朱弋 储强泽 程江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期262-270,共9页
In order to explore the dependence of plasticity of metallic material on a high magnetic held,the effects of the different magnetic induction intensities(H = 0 T,0.5 T,1 T,3 T,and 5 T) and pulses number(N = 0,10,20... In order to explore the dependence of plasticity of metallic material on a high magnetic held,the effects of the different magnetic induction intensities(H = 0 T,0.5 T,1 T,3 T,and 5 T) and pulses number(N = 0,10,20,30,40,and 50) on tensile strength(σ;) and elongation(δ) of 2024 aluminum alloy are investigated in the synchronous presences of a high magnetic held and external stress.The results show that the magnetic held exerts apparent and positive effects on the tensile properties of the alloy.Especially under the optimized condition of H;=1 T and N;=30,the σ;and 8 are 410 MPa and 17% that are enhanced by 9.3% and 30.8% respectively in comparison to those of the untreated sample.The synchronous increases of tensile properties are attributed to the magneto-plasticity effect on a quantum scale.That is,the magnetic held will accelerate the state conversion of radical pair generated between the dislocation and obstacles from singlet to the triplet state.The bonding energy between them is meanwhile lowered and the moving flexibility of dislocations will be enhanced.At H;= 1 T and N;= 30,the dislocation density is enhanced by 1.28 times.The relevant minimum grain size is 266.1 nm,which is reduced by 35.2%.The grain rehning is attributed to the dislocation accumulation and subsequent dynamic recrystallization.The(211) and(220) peak intensities are weakened.It is deduced that together with the recrystallization,the hne grains will transfer towards the slip plane and contribute to the slipping deformation. 展开更多
关键词 2024 aluminum alloy tensile strength ELONGATION magneto plasticity effect
下载PDF
Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM 被引量:4
8
作者 Huachun pi Jingtao Han +2 位作者 Chuanguo Zhang A. Kiet Tieu Zhengyi Jiang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期43-47,共5页
The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constituti... The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constitutive relations in the mesoscopic scale. The initial orientations obtained by electron backscatter diffraction (EBSD) are directly input into the CPFEM to simulate the mechanical response of polycrystalline 1050 pure Al in uniaxial tensile deformation. Two polycrystal models and two tensile strain rates were used in the simulations. The stress-strain curves of tensile deformation were analyzed. The predictions and the corresponding experiment result show reasonable agreement and slight deviation with experiments. The flow true stress of strain rate 0.01 s^-1 is higher than that of strain rate 0.001 s^-1. At the strain less than 0.05, the stress saturated rate of the experiment is higher than the simulated results. However, the stress saturated rate of the experiment becomes gentler than the corresponding simulated predictions at the strain over 0.05. Also, necking was simulated by the two models, but the necking strain is not well predicted. Tensile textures at strain 0.25 were predicted at the low strain rate of 0.001 s^-1. The predictions are in good accord with the experimental results. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 crystal plasticity f'mite element method electron backscatter diffraction (EBSD) uniaxial tensile deformation
下载PDF
Characterization of microstructure and strain response in Ti-6Al-4V plasma welding deposited material by combined EBSD and in-situ tensile test 被引量:2
9
作者 Martin BORLAUG MATHISEN Lars ERIKSEN +2 位作者 Yingda YU Ola JENSRUD Jarle HJELEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3929-3943,共15页
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col... Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests. 展开更多
关键词 Ti-6Al-4V alloy additive layer manufacturing electron backscatter diffraction in-situ tensile test plasma arc welding MICROSTRUCTURE plastic deformation
下载PDF
Influence of high pulsed magnetic field on tensile properties of TC4 alloy 被引量:1
10
作者 李桂荣 王芳芳 +3 位作者 王宏明 郑瑞 薛飞 程江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期293-300,共8页
The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field(HPMF) parallel to the axial direction.The effects of magnetic induction in... The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field(HPMF) parallel to the axial direction.The effects of magnetic induction intensity(5 = 0,1 T,3 T,and 5 T) on elongation(5) of TC4 alloy are investigated.At 3 T,the elongation arrives at a maximum value of12.41%,which is enhanced by 23.98%in comparison with that of initial sample.The elongation curve shows that 3 T is a critical point.With B increasing,the volume fraction of α phase is enhanced from 49.7%to 55.9%,which demonstrates that the HPMF can induce the phase transformation from β phase to α phase.Furthermore,the magnetic field not only promotes the orientation preference of crystal plane along the slipping direction,but also has the effect on increasing the dislocation density.The dislocation density increases with the enhancement of magnetic induction intensity and the 3-T parameter is ascertained as a turning point from increase to decrease tendency.When B is larger than 3 T,the dislocation density decreases with the enhancement of B.The influence of magnetic field is analyzed on the basis of magneto-plasticity effect.The high magnetic field will enhance the dislocation strain energy and promote the state conversion of radical pair generated between the dislocation and obstacles from singlet into triplet state,in which is analyzed the phenomenon that the dislocation density is at an utmost with B = 3 T.Finally,the inevitability of optimized 3-T parameter is further discussed on a quantum scale. 展开更多
关键词 TC4 titanium alloy tensile properties MICROSTRUCTURE magneto-plasticity effect
下载PDF
Microstructure and tensile properties of TiB_(2p)/6061Al composites
11
作者 姜龙涛 陈国钦 +4 位作者 赫晓东 赵敏 修子扬 范瑞君 武高辉 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期542-546,共5页
14% and 20% (volume fraction) TiB2p/6061Al composites were fabricated by pressure infiltration method, and then were extruded. The microstructure and properties of TiB2p/Al composites before and after extrusion were s... 14% and 20% (volume fraction) TiB2p/6061Al composites were fabricated by pressure infiltration method, and then were extruded. The microstructure and properties of TiB2p/Al composites before and after extrusion were studied by TEM, SEM and tensile method. The results show that TiB2 particles employed are equiaxed polyhedrals and are well wetted with the aluminum alloy. Hot extruding is effective in eliminating defects such as pores, which are induced in the fabrication process. After T6 treatment and extrusion treatment, elastic modulus, tensile strength and elongation of 14%TiB2p/6061Al composites are 107 GPa, 364.1 MPa and 9.25%, respectively. While those of 20%TiB2p/6061Al composites are 120 GPa, 472.6 MPa and 9.79%, respectively, which show high strength and plasticity. A lot of dimples and a few cracked particles are observed on the fracture surfaces of the composites, which indicates good plasticity of the composites. The high strength and plasticity of TiB2p/6061Al composites are attributed to good bonding between TiB2 particles and aluminum alloy. 展开更多
关键词 TiB2p/Al COMPOSITES MICROSTRUCTURE tensile BEHAVIOR high plasticity
下载PDF
THE DAMAGE STATES AND TENSILE FAILURE BEHAVIOR OF TORSIONAL PRESTRAINED STEELS
12
作者 zhou li(Department of Applied Mechanics,Northwestern Polytechnical University,Xi’an,710072,P.R.China) 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第3期229-234,共6页
In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under va... In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under various torsional prestrained conditions are investigated from both macroscopic and microscopic points of very slight as contrasted with tensile damage;(2)after torsional prestraining,both yielding strength and ultimate tensile strength become higher for 20 steel and lower for 40Cr steel;(3)when the torsional prestrain exceeds a critical value,that is about 70% of pure torsional shear fracture strain,the ductile-brittle transition of tensile fracture behavior may initiates.Moreover,the advantages and applicable conditions of torsional prestrain strengthening technique are also discussed. 展开更多
关键词 torsional prestrain plastic damage tensile failure ductile-brittle transition
下载PDF
Research on material design and high-temperature friction and wear properties of new graphitic steel
13
作者 QU Haixia HOU Xiaoguunn HAN Jianzeen 《Baosteel Technical Research》 CAS 2020年第3期12-22,共11页
To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear ... To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear properties were investigated.Moreover,the feasibility of replacing semi-steel with this new material in the V1 stand roll was studied herein.The results show that the graphitic steel matrix is strengthened by silicon and nickel elements.The presence of spherical graphite also provides self-lubrication and heat conduction and prevents the propagation of cracks.Carbides in the appropriate amount and size strengthen the matrix,reduce the cracking effect of the matrix,and are not easily broken,thereby reducing high-temperature abrasive wear.Under the same hightemperature friction and wear conditions,compared with semi-steel,the wear-scar surface of graphitic steel exhibits less wear-scar depth and wear volume,a smaller friction coefficient,reduced oxide layer thickness,and fewer instances of peeling and microcracks.Therefore,the newly designed graphitic steel has higher wear resistance and hot-crack resistance than semi-steel,which makes it feasible for use in replacing semi-steel as a new V1 frame roll material in the blooming mill. 展开更多
关键词 graphitic steel MICROSTRUCTURE high-temperature friction and wear properties high-temperature tensile strength thermal cracking resistance
下载PDF
High-temperature stability of retained austenite and plastic deformation mechanism of ultra-fine bainitic steel isothermally treated below Ms
14
作者 Ting-ting He Feng Hu +4 位作者 Kun Wang Wen Zhou Li Li Serhii Yershov Kai-ming Wu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2014-2030,共17页
The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(ma... The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced. 展开更多
关键词 Ultra-fine bainite Isothermal treatment high-temperature tensile property Retained austenite stability plastic deformation
原文传递
Investigation of the alloying effect on deformation behavior in Mg by Visco-Plastic Self-Consistent modeling 被引量:8
15
作者 Alireza Maldar Leyun Wang +1 位作者 Gaoming Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE 2020年第1期210-218,共9页
Alloying elements can drastically alter the deformation behavior of Mg.In the present work,Visco-Plastic Self-Consistent(VPSC)modeling was employed to investigate the effect of alloying elements on Mg’s tensile behav... Alloying elements can drastically alter the deformation behavior of Mg.In the present work,Visco-Plastic Self-Consistent(VPSC)modeling was employed to investigate the effect of alloying elements on Mg’s tensile behavior,in particular the relative activity of different slip and twinning modes.Mg-0.47 wt.%Ca,Mg-2 wt.%Nd,and AZ31 extruded alloys were deformed by micro-tensile tests in a scanning electron microscope(SEM).Texture and grain size measured by electron backscatter diffraction(EBSD)were used as the input for VPSC.After parameter optimization,the VPSC model successfully reproduced the stress-strain curve of each alloy.Simulation results indicate that the slip/twinning activity in the three alloys are different.Mg-0.47 wt.%Ca shows strong extrusion texture,and prismatic slip was quite active during its tensile deformation.In contrast,Mg-2 wt.%Nd shows weak extrusion texture,and basal slip was dominant.This alloy also developed more twinning activity than the other two alloys.AZ31 shows strong extrusion texture similar as Mg-0.47 wt.%Ca,but prismatic slip was less active in it.The slip/twinning activity revealed by the VPSC model can explain the difference in the tensile behavior of the three alloys. 展开更多
关键词 Mg alloys Crystal plasticity SLIP EBSD tensile test
下载PDF
Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates 被引量:4
16
作者 Haikuan Wu Changwu Liu +1 位作者 Song Shi Kangliang Chen 《Journal of Renewable Materials》 SCIE EI 2020年第7期727-738,共12页
In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,spli... In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,splitting tensile strength and the change of mass caused by water absorption during curing were measured.The results show that the strength of concrete is increased by adding recycled plastic into concrete.Among them,the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%.With the increase of plastic content,the development speed of early strength slows down.Silane coupling agent plays a positive role in the strength of recycled plastic concrete.The water absorption saturation of concrete has been basically completed in the early stage.The addition of silane coupling agent makes the porosity of concrete reduce and the water absorption of concrete become poor.By summing up the physical and mechanical properties of recycled plastic concrete,it could be found that the addition of recycled plastic was effective for the modification of concrete materials.Under the control of the amount of recycled plastic,the strength of concrete with recycled plastic aggregates can meet the engineering requirements. 展开更多
关键词 Compressive strength recycled plastic concrete splitting tensile strength water absorption mechanical properties
下载PDF
Studies on Epoxidised Castor Oil as Co-Plasticizer with Epoxidised Soyabean Oil for PVC Processing 被引量:3
17
作者 Gouni Thirupathiah Sukanya Satapathy Aruna Palanisamy 《Journal of Renewable Materials》 SCIE 2019年第8期775-785,共11页
An acidic cation exchange resin has been used to prepare epoxidised castor oil(ECO)which was used as a co-plasticizer with epoxidised soyabean oil(ESBO)for processing polyvinyl chloride(PVC).The structure of ECO was c... An acidic cation exchange resin has been used to prepare epoxidised castor oil(ECO)which was used as a co-plasticizer with epoxidised soyabean oil(ESBO)for processing polyvinyl chloride(PVC).The structure of ECO was confirmed and its physico chemical properties were evaluated.PVC/(ESBO&ECO)blends were prepared by melt mixing and compression molded into sheets.The specimens were evaluated for tensile properties,impact strength and hardness.While the tensile strength did not vary much,the elongation reduced with the replacement of ESBO with ECO.Dynamic mechanical studies revealed that the glass transition temperature increased with incorporation of ECO,however,the storage modulus was not altered much.Replacing 20%of ESBO with ECO resulted in blends with desired thermal and mechanical properties without affecting the processability of PVC. 展开更多
关键词 PVC plasticIZER epoxidised castor oil tensile strength
下载PDF
High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel 被引量:2
18
作者 Guodong Hu Pei Wan +1 位作者 Dianzhong Li Yiyi Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第11期1455-1465,共11页
In this study,tensile behavior of Nb-containing 25Cr-20Ni austenitic stainless steels composed of coarse or fine grains has been investigated at temperatures ranging from room temperature to 900℃.Results show that th... In this study,tensile behavior of Nb-containing 25Cr-20Ni austenitic stainless steels composed of coarse or fine grains has been investigated at temperatures ranging from room temperature to 900℃.Results show that the tensile strength of fine-grained specimens decreases faster than that of coarse-grained specimens,as the test temperature increases from 600℃ to 800℃.The rapidly decreasing tensile strength is attributed to the enhanced dynamic recovery and recrystallization,because additional slip systems are activated,and cross-slipping is accelerated during deformation in fine-grained specimens.After tensile testing at 700-900℃,sigma phases are formed concurrently with dynamic recrystallization in fine-grained specimens.The precipitation of sigma phases is induced by simultaneous recrystallization as the diffusion of alloying elements is accelerated during the recrystallization process.Additionally,the minimum ductility is observed in coarse-grained specimens at 800℃,which is caused by the formation of M23C6 precipitates at the grain boundaries. 展开更多
关键词 Austenitic stainless steels high-temperature tensile properties Grain size PRECIPITATES
原文传递
High-temperature oxidation behavior of DZ125 Ni-based superalloy under tensile stress 被引量:2
19
作者 Hong-Yu Qi Xiao-Bo Liang +1 位作者 Shao-Lin Li Xiao-Guang Yang 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4188-4193,共6页
The key in antioxidant capacity of aero-engine hot components is the protective oxide scales.Many factors can affect the performance of oxide scales.The effect of tensile stress on high-temperature oxidation behavior ... The key in antioxidant capacity of aero-engine hot components is the protective oxide scales.Many factors can affect the performance of oxide scales.The effect of tensile stress on high-temperature oxidation behavior of directionally solidified DZ125 Ni-based superalloy was investigated by thermogravimetric analysis(TGA).Tensile samples were subjected to stress of 100 MPa,and the oxidation behavior was studied at 980℃in air.The surface and cross-sectional morphologies of the oxidized coating were analyzed by scanning electron microscope(SEM).The influence of tensile stress on the oxidation behavior of directionally solidified DZ125 Ni-based superalloy at high temperature was discussed.Results show that an applied tensile stress generally leads to larger Cr/Ni mass ratio in the oxide scales,greater overall chromium depletion values directly under the oxide scales,lower specific weight gain values and thinner oxide scales.These factors are attributed to the formation of fast diffusion paths for Cr atoms to diffuse to the surface under tensile stress,thus causing a reduction in the duration of the less protective transient oxidation period and promoting a faster formation of the protective Cr_(2)O_(3)layer. 展开更多
关键词 DZ125 Ni-based superalloy high-temperature oxidation tensile stress DIFFUSION
原文传递
High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel
20
作者 Sihan Chen Tian Liang +4 位作者 Guangcai Ma Chengwu Zheng Deli Chen Yingche Ma Kui Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第9期1519-1530,共12页
An austenitic stainless steel with 6 wt% Si and multiple secondary phases was produced with the aim to achieve enhanced plasticity during hot deformation.The micro structure of the steel after fracture was characteriz... An austenitic stainless steel with 6 wt% Si and multiple secondary phases was produced with the aim to achieve enhanced plasticity during hot deformation.The micro structure of the steel after fracture was characterized via electron back-scattered diffraction,transmission Kikuchi diffraction and scanning transmission electron microscopy.From the tail of the gage to the necking region,the microstructure of the material evolved from low-angle grain boundaries(LAGB s) to mixtures of LAGBs and high-angle grain boundaries(HAGBs),and fine equiaxed recrystallized grains.The elongation to failure in the tensile test exceeds 167%.During the hot deformation,continuous dynamic recrystallization of the austenitic matrix was promoted by the multiple secondary phases.The dislocations introduced by the secondary phases were rearranged and continuously transformed into HAGBs.The initially coarse grains(30.5 μm) were refined into ultra-fine equiaxed grains(1 μm),which contributed significantly the enhanced plasticity during hot deformation of the steel.In the necking area of the sample,twins were nucleated in the stress concentration regions and accommodated the local strain by discontinuous dynamic recrystallization,which was also beneficial to improving the plasticity. 展开更多
关键词 High-Si austenitic stainless steel high-temperature deformation plasticity enhancement Dynamic recrystallization Secondary phases
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部