Block copolymers are marked by alternation of hard blocks and soft blocks, whereby the hard blocks are believed to form crystalline domains in non-crystalline matrix formed by aggregation of the soft blocks and a frac...Block copolymers are marked by alternation of hard blocks and soft blocks, whereby the hard blocks are believed to form crystalline domains in non-crystalline matrix formed by aggregation of the soft blocks and a fraction of the hard blocks escaping crystallization. On the basis of this two-phase model a number of studies has been made varying the nature and length of hard and soft blocks. After reviewing some papers published in this field, it may be concluded that the system in which properties of thermoplastic elastomers are exhibited can be generally divided into three catalogues, they are polyurethane, polyether-ester, polyesteramide elastomers. Structure-property relationship of these thermoplastic elastomers are given in this paper.展开更多
Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been foun...Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.展开更多
The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat...The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM.展开更多
This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works wer...This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.展开更多
A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis...A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.展开更多
It remains challenging to synthesize supertough thermoplastic elastomers(TPEs)since the stretchability and tensile strength are mutually exclusive.Here,we report a one-pot strategy for the preparation of sustainable,t...It remains challenging to synthesize supertough thermoplastic elastomers(TPEs)since the stretchability and tensile strength are mutually exclusive.Here,we report a one-pot strategy for the preparation of sustainable,triblock polyester TPEs consisting of poly(L-lactide)(PLLA)hard segments and poly(ɛ-caprolactone)-co-poly(δ-valerolactone)(PCVL)soft segments.The TPEs were synthesized successfully with high stretchability(up to 2100%)and strong tensile strength(up to 71.5 MPa)without requiring specific functionalized groups by simply adjusting the polymer microstructures,which,in turn,exhibited a world’s record toughness of 445 MJ/m^(3).Systematic investigation revealed that the block-like,gradient microstructure of PCVL improved the ductility by providing a flexible elastic network and enhancing the tensile strength through strain-induced crystallization.The practicability of this strategy was well demonstrated by lifting a water tank over 30,000 times heavier than itself and easy scale-up experiments.展开更多
Abstract Biodegradable poly(ether-imide-ester) elasto- mers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N',N-bis(2-carboxyethyl)- pyromellitimide which was derived from pyrom...Abstract Biodegradable poly(ether-imide-ester) elasto- mers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N',N-bis(2-carboxyethyl)- pyromellitimide which was derived from pyromellitic dianhydride and glycine. The chemical structures, crystal- linities, thermal stabilities, mechanical properties, hydro- philicities and biodegradabilities of these elastomers were investigated. The hard segments of the linear aliphatic poly (ether-ester) exhibited monoclinic chain packing. Increas- ing the amount of aromatic bisimide moieties in the poly (ether-ester) reduced the crystallinity of the material and improved the thermal stability and tensile strength of the elastomers. In addition, introducing a suitable amount of aromatic bisimide moieties into the poly(ether-ester) backbones endowed the elastomers with improved biode- gradability but too many aromatic bisimide groups reduced the biodegradability of the elastomers.展开更多
Through the addition of appropriate amount of Mg (0.01-0.01 5 wt%) to the stainless bearing steel Cr14Mo4, the high-temperature thermoplasticity of steel was improved. The mechanism has been uncovered that the added...Through the addition of appropriate amount of Mg (0.01-0.01 5 wt%) to the stainless bearing steel Cr14Mo4, the high-temperature thermoplasticity of steel was improved. The mechanism has been uncovered that the added Mg plays an important role in refining and uniforming the carbide precipitations in the steel. It has been found that the segregation of trace Mg is the key to improve the dispersed carbide. Moreover, considerable segregation of Mg in steel during annealing was evidenced by the theoretic analysis.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
文摘Block copolymers are marked by alternation of hard blocks and soft blocks, whereby the hard blocks are believed to form crystalline domains in non-crystalline matrix formed by aggregation of the soft blocks and a fraction of the hard blocks escaping crystallization. On the basis of this two-phase model a number of studies has been made varying the nature and length of hard and soft blocks. After reviewing some papers published in this field, it may be concluded that the system in which properties of thermoplastic elastomers are exhibited can be generally divided into three catalogues, they are polyurethane, polyether-ester, polyesteramide elastomers. Structure-property relationship of these thermoplastic elastomers are given in this paper.
文摘Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
基金FundedbyKeyScientificandTechnologicalProjectofHubeiProvince (No .96 1 0 2 1 70 94 )
文摘The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM.
文摘This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.
基金financially supported by the National Natural Science Foundation of China(Nos.21244006 and 50873013)
文摘A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.
基金supported by the National Natural Science Foundation of China(grant no.22071077)Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(grant no.2019-16)to Y.Z.,(grant no.51525305)to Y.M.,and(grant no.51988102)to X.C.
文摘It remains challenging to synthesize supertough thermoplastic elastomers(TPEs)since the stretchability and tensile strength are mutually exclusive.Here,we report a one-pot strategy for the preparation of sustainable,triblock polyester TPEs consisting of poly(L-lactide)(PLLA)hard segments and poly(ɛ-caprolactone)-co-poly(δ-valerolactone)(PCVL)soft segments.The TPEs were synthesized successfully with high stretchability(up to 2100%)and strong tensile strength(up to 71.5 MPa)without requiring specific functionalized groups by simply adjusting the polymer microstructures,which,in turn,exhibited a world’s record toughness of 445 MJ/m^(3).Systematic investigation revealed that the block-like,gradient microstructure of PCVL improved the ductility by providing a flexible elastic network and enhancing the tensile strength through strain-induced crystallization.The practicability of this strategy was well demonstrated by lifting a water tank over 30,000 times heavier than itself and easy scale-up experiments.
文摘Abstract Biodegradable poly(ether-imide-ester) elasto- mers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N',N-bis(2-carboxyethyl)- pyromellitimide which was derived from pyromellitic dianhydride and glycine. The chemical structures, crystal- linities, thermal stabilities, mechanical properties, hydro- philicities and biodegradabilities of these elastomers were investigated. The hard segments of the linear aliphatic poly (ether-ester) exhibited monoclinic chain packing. Increas- ing the amount of aromatic bisimide moieties in the poly (ether-ester) reduced the crystallinity of the material and improved the thermal stability and tensile strength of the elastomers. In addition, introducing a suitable amount of aromatic bisimide moieties into the poly(ether-ester) backbones endowed the elastomers with improved biode- gradability but too many aromatic bisimide groups reduced the biodegradability of the elastomers.
基金supported by the National Natural Science Foundation of China(Grant No.51174050)the Fundamental Research Project of the Ministry of Education of China (Grant No.N110402010)Liaoning Province High School Innovation Team Support Plan
文摘Through the addition of appropriate amount of Mg (0.01-0.01 5 wt%) to the stainless bearing steel Cr14Mo4, the high-temperature thermoplasticity of steel was improved. The mechanism has been uncovered that the added Mg plays an important role in refining and uniforming the carbide precipitations in the steel. It has been found that the segregation of trace Mg is the key to improve the dispersed carbide. Moreover, considerable segregation of Mg in steel during annealing was evidenced by the theoretic analysis.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.