The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys ...The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the alumin- ium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.展开更多
The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which co...The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys.展开更多
High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a...High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.展开更多
The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitio...The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitioning behavior of carbon and the relation of carbon content to the distributions of Al and Mo in the primary αp phase (α p) and β transformed structure (β). It was found that interstitial carbon is enriched in the α p phase and its content slightly reduces with the increase of the volume fraction of α p. The measurements of carbon content in the present alloy with an α p of 15vol% showed that the carbon content in the α p phase increases with the increment of carbon addition until a maximum but keeps almost constant in the β phase. The addition of carbon reduces the solubility of Al and Mo in the α p phase and leads to the increment of Mo partitioning to the β phase. When the carbon content is over 0.17wt% (0.67at%), carbide precipitation occurs in the matrix and its volume fraction is related to the volume fraction of α p which can be explained in term of the difference of carbon solubility in the α p and β phases.展开更多
The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium ma...The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials.展开更多
The isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 ℃ in 50 ℃ intervals,with strain rate of 0.001-1.000 s-1and height reduction of 20%-60%.The e...The isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 ℃ in 50 ℃ intervals,with strain rate of 0.001-1.000 s-1and height reduction of 20%-60%.The effect of processing parameters(deformation temperature,strain rate and deformation degree) on the microstructure evolution and the microstructure variables was investigated.The results show that the content of primary α phase decreases with the increase in deformation temperature.The effect of strain rate on microstructure variables of isothermally compressed Ti555211 alloy is mainly dependent on the deformation temperature.The fine second α phase partly transforms to β phase due to the deformation heat effect at the high strain rate,α phase becomes globular with temperature increasing and strain rate decreasing.In contrast,α phase is refined with temperature decreasing and strain rate increasing.The deformation degree has a little influence on the grain size and the morphology of primary α phase,but the effect of deformation degree on the morphology of second α phase is significant.The larger deformation degree is in favor of the globularization of lamellar α structure.展开更多
TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(...TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(2))content and preparing temperature play important roles in the dielectric properties.Simultaneously,TiB_(2)/Al2O3 composite shows the best MW absorption property when the C-TiB_(2)content and preparing temperature are 9 wt%and 1400°C.To further improve the MW absorption properties,the composite containing 9 wt%synthesized TiB_(2)(S-TiB_(2))has been sintered at 1400°C.Its high-temperature complex permittivity is greater than that of TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2)sintered at 1400°C and is directly proportional to the temperature.Besides,TiB_(2)/Al2O3 composite with 9 wt%S-TiB_(2)possesses a better MW absorption at 25–500°C,its effective absorption bandwidth(RL<-5 dB)can reach 4.2 GHz at 25–500°C.And the minimum reflection loss(RLmin)value reaches-43.41 dB at the temperature of 800°C with a thickness of 1.45 mm for TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2).Consequently,the satisfying absorbing layer(d<1.75 mm),flexural strength,heat stability and considerable high-temperature MW absorption ability grant TiB_(2)/Al2O3 ceramics practical applications as high-temperature microwave absorption materials(MAMs).展开更多
Reducing the hot working temperature and high-temperature deformation resistance of titanium alloy to improve hot rolling and hot extrusion workability of products with thin walls and complex section shapes has always...Reducing the hot working temperature and high-temperature deformation resistance of titanium alloy to improve hot rolling and hot extrusion workability of products with thin walls and complex section shapes has always been an important topic in the field of titanium alloy processing.This paper proposed a strategy of adding Mo and Fe elements to simultaneously reduce the hot working temperature and high-temperature deformation resistance of Ti-6Al-4V alloy.The effects of Mo and Fe contents on the mi-crostructure,β transus temperature(Tp),and high-temperature flow stress(HFS)of Ti-6Al-4V-xMo-xFe(x=0-5)alloys were investigated.The results showed that adding Mo and Fe can substantially reduce the Tp and HFS of the alloy,and greatly improve its room-temperature strength.Compared with com-mercial Ti-6Al-4V samples,the T_(β) of Ti-6Al-4V-2Mo-2Fe and Ti-6Al-4V-3Mo-3Fe samples was decreased by 68-98 ℃,and the HFS at 800-900 ℃ was decreased by 37.8%-46.0%.Compared with hot-rolled Ti-6Al-4V samples,the room-temperature tensile strength of hot-rolled Ti-6Al-4V-2Mo-2Fe samples was increased by about 30%,while the elongation hardly decreased.The increased strength was mainly at-tributed to fine grain strengthening and solid solution strengthening.The hot workability and room-temperature strength of Ti-6Al-4V alloy can be significantly improved by adding 2-3 wt.%Mo and Fe simultaneously.展开更多
Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we de...Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we designed and fabricated a multiphase Ti-Mo-Ag composite(TMA)with heterogeneous triple-phase precipitation(TPP)structure by spark plasma sintering.A lamellarα-phase(αL)precipitates from theβ-phase under furnace cooling conditions and maintains a Burgers orientation relationship(BOR)withβ-matrix.An active eutectic transition also occurs in the titanium matrix,resulting in TiAg phase.The intersecting acicular TiAg and lamellarαL cutβgrains into fine blocks and the primary equiaxedαphase also provides many interfaces withβphase,which together effectively impede dislocation move-ment and increase strength.Compared with other titanium composites,TMA with TPP microstructure gets an excellent combination of strength(yield strength 1205 MPa)and toughness(fracture strain 27%).Furthermore,the TPP structure endows TMA with strong cracking resistance,which aids in reducing abra-sive debris at high temperatures during sliding and obtaining a low wear rate.Simultaneously,Ag parti-cles distributed at grain boundaries will easily diffuse to the wear surface,in situ forming the necessary lubricating phase Ag_(2)MoO_(4) with Mo-rich matrix debris via oxidation.TMA possesses excellent tribologi-cal properties with especially low wear rate of 8.0 x 10^(-6)mm^(3)N^(-1)m^(-1) and friction coefficient(CoF)of merely 0.20 at 600℃.Unlike other self-lubricating composites with high volume fraction of soft ceramic lubricants,which inevitably sacrifice their mechanical strength and ductility,the composite TMA pos-sesses well-balanced strength,toughness and self-lubricating properties.It holds important implications to design other metal matrix self-lubricating composites(MMSCs)used for load-bearing moving parts.展开更多
This paper presents a comprehensive study conducted to optimize the selective laser melting(SLM)parameters and subsequent heat-treatment temperatures for near-α high-temperature titanium alloy Ti-6 Al-2 Zr-1 Mo-1 V(T...This paper presents a comprehensive study conducted to optimize the selective laser melting(SLM)parameters and subsequent heat-treatment temperatures for near-α high-temperature titanium alloy Ti-6 Al-2 Zr-1 Mo-1 V(TA15),which is widely used in the aerospace industry.Based on the surface morphology and relative density analysis,the optimized process parameters were:laser power from 230 W to 380 W,scan speed from 675 mm/s to 800 mm/s,scan spacing of 0.12 mm,and layer thickness of0.03 mm.The effects of the laser power and the layer thickness on the phase constitutions,microstructure features,as well as room-temperature and high-temperature(500℃) tensile properties,were then studied to obtain an in-depth understanding of SLM-built TA15.Six typical temperatures(650,750,850,950,1000 and 1100℃) covering three representative temperature ranges,i.e.,martensite partial decomposition temperature range,martensite complete decomposition temperature range and above βtransus temperature,were subsequently selected as heat-treatment temperatures.The heat treatmentmicrostructure-mechanical property relationships of SLM-built TA15 were elucidated in detail.These results provide valuable information on the development of SLM-built TA15 alloy for industrial applications,and these findings are also beneficial to additive manufacturing of other near-α Ti alloys with desirable high-temperature properties.展开更多
The characteristic of precipitation behavior of a2 phase and silicide, and the tensile properties at room temperature and 650℃after heat treatments in anovel TiAl-Sn-Zr-Mo-Nb-W-Si titanium alloy(BTi-6431 S) were in...The characteristic of precipitation behavior of a2 phase and silicide, and the tensile properties at room temperature and 650℃after heat treatments in anovel TiAl-Sn-Zr-Mo-Nb-W-Si titanium alloy(BTi-6431 S) were investigated by microstructure analysis and mechanics performance testing. The results show that no second phase precipitates after solution treatment(980 ℃/2 h, air cooling(AC)). However, when the solution-treated specimens are aged at 600 ℃(600 ℃/2 h,AC),α;phase precipitates in the primary α phase, and the size of α;phase increases with the aging temperature increasing to 750 ℃. Meanwhile, 50-100-nm S2-type silicide particles precipitate along lamellar phase boundaries of transformed β phase after aging at 750 ℃. BTi-6431 S alloy shows the best650 ℃ ultimate tensile strength(UTS) and yield strength(YS) when treated in solution treatment. However, aging treatment results in a decline in 650 ℃ ultimate tensile strength. This may be attributed to the loss of solution strengthening due to the depletion of Al, Si and Zr of the matrix caused by the precipitation of Ti;Al and(TiZr);Si;.Silicide is a brittle phase; therefore, its precipitation causes a sharp decrease in the room-temperature ductility of BTi-6431 S alloy.展开更多
Damage tolerance of titanium alloy structures is very important for the safety of modern aircraft under complex loading and environmental conditions. However, there is no available systematic knowledge about the effec...Damage tolerance of titanium alloy structures is very important for the safety of modern aircraft under complex loading and environmental conditions. However, there is no available systematic knowledge about the effect of alloy thickness under mixed-mode loading at elevated temperatures. In the present study, a newly developed fracture experimental technique based on high-temperature moiré interferometry was employed to investigate experimentally I-II mixed-mode fracture in titanium alloy TC11 of various thicknesses at room and elevated temperatures. Compact shear specimens with thickness ranging from 1.8 to 7.1 mm were tested. The effects of temperature, thickness, and loading angle on the load capacity and crack initiation angle were investigated systematically. The TC11 alloy was shown to possess varied fracture performance at elevated tem-perature, and an opposite thickness effect at room temperature. Increasing temperature would enhance the fracture load capacity of thick specimens but reduce the fracture load capacity of thin specimens. Crack initiation angles under I-II mixed-mode loading showed the thickness-temperature coupling effects. These complex effects call for new development in three-dimensional mixed-mode fracture theory and technologies for damage tolerance assessment.展开更多
The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs ...The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs are prepared by the spark plasma sintering (SPS).Further,the influences of the Al_(2)O_(3) content on the flexural strength,thermal stability,high-temperature electrical conductivity,dielectric and MA properties are discussed.The results show that the Al_(2)O_(3) content is associated with flexural strength,high-temperature thermal stability,electrical conductivity,dielectric and MA properties.Meanwhile,the temperatureinsensitive and considerable MA properties with the minimum reflection loss (RLmin) ranging from -19.4 to -14.3 dB and the effective absorption bandwidth (EAB,RL<-5 dB) of 3.19–3.55 GHz are attained at 25°C–700°C in 8.2–12.4 GHz as the Al_(2)O_(3) content increases from 70.6 wt%to 80.6 wt%.This is ascribed to the compensating effect of the positive and negative temperature coefficient materials on the high-temperature electrical conductivity as well as the co-play of the dipolar and interfacial polarization at elevated temperatures.Consequently,Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) ceramics exhibit the ideal prospect as the high-temperature MAMs.展开更多
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100℃was systematically investigated in the temperature range of 750-900℃under an initial strain rate of 10^(-4)s^(-1).A bimodalγgraindistribution mi...The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100℃was systematically investigated in the temperature range of 750-900℃under an initial strain rate of 10^(-4)s^(-1).A bimodalγgraindistribution microstructure of Ti Al alloy sheet,with abundant nano-scale or sub-micronγlaths embedded insideβmatrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m=0.27 at 800℃,which is the lowest temperature of superplastic deformation for Ti Al alloys attained so far.The maximum elongation reaches~360%at 900℃with an initial strain rate of 2.0×10^(-4)s^(-1).To elucidate the softening mechanism of the disorderedβphase during superplastic deformation,the changes of phase composition were investigated up to 1000℃using in situ high-temperature X-ray diffraction(XRD)in this study.The results indicate thatβphase does not undergo the transformation from an ordered L2;structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of bothγandβdynamic recrystallization(DR)after tensile tests as characterized with electron backscatter diffraction(EBSD),the superplastic deformation mechanism can be explained by the combination of DR and grain boundary slipping(GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic deformation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic Ti Al alloy.展开更多
文摘The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the alumin- ium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.
文摘The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys.
基金National Key Research and Development Program of China(No.2021YFB3702604)National Natural Science Foundation of China(No.52002326).
文摘High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure.However,the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property.Here,we proposed two cross-materials transfer learning(TL)strategies to improve the prediction of creep rupture life of high-temperature titanium alloys.Both strategies effectively utilized the knowledge or information encoded in the large dataset(753 samples)of Fe-base,Ni-base,and Co-base superalloys to enhance the surrogate model for small dataset(88 samples)of high-temperature titanium alloys.The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets.The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset.Our TL models improved the predictions greatly compared to the mod-els obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys.This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.
文摘The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitioning behavior of carbon and the relation of carbon content to the distributions of Al and Mo in the primary αp phase (α p) and β transformed structure (β). It was found that interstitial carbon is enriched in the α p phase and its content slightly reduces with the increase of the volume fraction of α p. The measurements of carbon content in the present alloy with an α p of 15vol% showed that the carbon content in the α p phase increases with the increment of carbon addition until a maximum but keeps almost constant in the β phase. The addition of carbon reduces the solubility of Al and Mo in the α p phase and leads to the increment of Mo partitioning to the β phase. When the carbon content is over 0.17wt% (0.67at%), carbide precipitation occurs in the matrix and its volume fraction is related to the volume fraction of α p which can be explained in term of the difference of carbon solubility in the α p and β phases.
基金Funded by the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China(No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials.
基金financially supported by the Project of Introducing Talents of Discipline to Universities (‘‘111’’ Project) (No. B08040)
文摘The isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 ℃ in 50 ℃ intervals,with strain rate of 0.001-1.000 s-1and height reduction of 20%-60%.The effect of processing parameters(deformation temperature,strain rate and deformation degree) on the microstructure evolution and the microstructure variables was investigated.The results show that the content of primary α phase decreases with the increase in deformation temperature.The effect of strain rate on microstructure variables of isothermally compressed Ti555211 alloy is mainly dependent on the deformation temperature.The fine second α phase partly transforms to β phase due to the deformation heat effect at the high strain rate,α phase becomes globular with temperature increasing and strain rate decreasing.In contrast,α phase is refined with temperature decreasing and strain rate increasing.The deformation degree has a little influence on the grain size and the morphology of primary α phase,but the effect of deformation degree on the morphology of second α phase is significant.The larger deformation degree is in favor of the globularization of lamellar α structure.
基金the National Natural Science Foundation of China(Grant Nos.61701185&61801186)。
文摘TiB_(2)/Al2O3 ceramics reinforced with Mg O are prepared by spark plasma sintering(SPS).The dielectric and microwave(MW)absorption properties are discussed.The results indicate that both the commercial TiB_(2)(C-TiB_(2))content and preparing temperature play important roles in the dielectric properties.Simultaneously,TiB_(2)/Al2O3 composite shows the best MW absorption property when the C-TiB_(2)content and preparing temperature are 9 wt%and 1400°C.To further improve the MW absorption properties,the composite containing 9 wt%synthesized TiB_(2)(S-TiB_(2))has been sintered at 1400°C.Its high-temperature complex permittivity is greater than that of TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2)sintered at 1400°C and is directly proportional to the temperature.Besides,TiB_(2)/Al2O3 composite with 9 wt%S-TiB_(2)possesses a better MW absorption at 25–500°C,its effective absorption bandwidth(RL<-5 dB)can reach 4.2 GHz at 25–500°C.And the minimum reflection loss(RLmin)value reaches-43.41 dB at the temperature of 800°C with a thickness of 1.45 mm for TiB_(2)/Al2O3 composite with 9 wt%C-TiB_(2).Consequently,the satisfying absorbing layer(d<1.75 mm),flexural strength,heat stability and considerable high-temperature MW absorption ability grant TiB_(2)/Al2O3 ceramics practical applications as high-temperature microwave absorption materials(MAMs).
基金National Natural Science Foundation of China(No.52090041).
文摘Reducing the hot working temperature and high-temperature deformation resistance of titanium alloy to improve hot rolling and hot extrusion workability of products with thin walls and complex section shapes has always been an important topic in the field of titanium alloy processing.This paper proposed a strategy of adding Mo and Fe elements to simultaneously reduce the hot working temperature and high-temperature deformation resistance of Ti-6Al-4V alloy.The effects of Mo and Fe contents on the mi-crostructure,β transus temperature(Tp),and high-temperature flow stress(HFS)of Ti-6Al-4V-xMo-xFe(x=0-5)alloys were investigated.The results showed that adding Mo and Fe can substantially reduce the Tp and HFS of the alloy,and greatly improve its room-temperature strength.Compared with com-mercial Ti-6Al-4V samples,the T_(β) of Ti-6Al-4V-2Mo-2Fe and Ti-6Al-4V-3Mo-3Fe samples was decreased by 68-98 ℃,and the HFS at 800-900 ℃ was decreased by 37.8%-46.0%.Compared with hot-rolled Ti-6Al-4V samples,the room-temperature tensile strength of hot-rolled Ti-6Al-4V-2Mo-2Fe samples was increased by about 30%,while the elongation hardly decreased.The increased strength was mainly at-tributed to fine grain strengthening and solid solution strengthening.The hot workability and room-temperature strength of Ti-6Al-4V alloy can be significantly improved by adding 2-3 wt.%Mo and Fe simultaneously.
基金National Natural Science Foundation of China(No.51871051)Fourth Batch of Ningxia Youth Talents Supporting Program(No.TJGC2019028).
文摘Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we designed and fabricated a multiphase Ti-Mo-Ag composite(TMA)with heterogeneous triple-phase precipitation(TPP)structure by spark plasma sintering.A lamellarα-phase(αL)precipitates from theβ-phase under furnace cooling conditions and maintains a Burgers orientation relationship(BOR)withβ-matrix.An active eutectic transition also occurs in the titanium matrix,resulting in TiAg phase.The intersecting acicular TiAg and lamellarαL cutβgrains into fine blocks and the primary equiaxedαphase also provides many interfaces withβphase,which together effectively impede dislocation move-ment and increase strength.Compared with other titanium composites,TMA with TPP microstructure gets an excellent combination of strength(yield strength 1205 MPa)and toughness(fracture strain 27%).Furthermore,the TPP structure endows TMA with strong cracking resistance,which aids in reducing abra-sive debris at high temperatures during sliding and obtaining a low wear rate.Simultaneously,Ag parti-cles distributed at grain boundaries will easily diffuse to the wear surface,in situ forming the necessary lubricating phase Ag_(2)MoO_(4) with Mo-rich matrix debris via oxidation.TMA possesses excellent tribologi-cal properties with especially low wear rate of 8.0 x 10^(-6)mm^(3)N^(-1)m^(-1) and friction coefficient(CoF)of merely 0.20 at 600℃.Unlike other self-lubricating composites with high volume fraction of soft ceramic lubricants,which inevitably sacrifice their mechanical strength and ductility,the composite TMA pos-sesses well-balanced strength,toughness and self-lubricating properties.It holds important implications to design other metal matrix self-lubricating composites(MMSCs)used for load-bearing moving parts.
基金financially supported by the National Key Research and Development Program of China “the Clinical Application of Personalized Implant Prosthesis Additive Manufacturing Process Research” (No. 2016YFB1101303)the National Natural Science Foundation of China (Nos. 51705170 and 51905192)the China Postdoctoral Science Foundation (Nos. 2017M620312 and 2018T110756)。
文摘This paper presents a comprehensive study conducted to optimize the selective laser melting(SLM)parameters and subsequent heat-treatment temperatures for near-α high-temperature titanium alloy Ti-6 Al-2 Zr-1 Mo-1 V(TA15),which is widely used in the aerospace industry.Based on the surface morphology and relative density analysis,the optimized process parameters were:laser power from 230 W to 380 W,scan speed from 675 mm/s to 800 mm/s,scan spacing of 0.12 mm,and layer thickness of0.03 mm.The effects of the laser power and the layer thickness on the phase constitutions,microstructure features,as well as room-temperature and high-temperature(500℃) tensile properties,were then studied to obtain an in-depth understanding of SLM-built TA15.Six typical temperatures(650,750,850,950,1000 and 1100℃) covering three representative temperature ranges,i.e.,martensite partial decomposition temperature range,martensite complete decomposition temperature range and above βtransus temperature,were subsequently selected as heat-treatment temperatures.The heat treatmentmicrostructure-mechanical property relationships of SLM-built TA15 were elucidated in detail.These results provide valuable information on the development of SLM-built TA15 alloy for industrial applications,and these findings are also beneficial to additive manufacturing of other near-α Ti alloys with desirable high-temperature properties.
基金financially supported by the National Natural Science Foundation of China (No. 51201016)
文摘The characteristic of precipitation behavior of a2 phase and silicide, and the tensile properties at room temperature and 650℃after heat treatments in anovel TiAl-Sn-Zr-Mo-Nb-W-Si titanium alloy(BTi-6431 S) were investigated by microstructure analysis and mechanics performance testing. The results show that no second phase precipitates after solution treatment(980 ℃/2 h, air cooling(AC)). However, when the solution-treated specimens are aged at 600 ℃(600 ℃/2 h,AC),α;phase precipitates in the primary α phase, and the size of α;phase increases with the aging temperature increasing to 750 ℃. Meanwhile, 50-100-nm S2-type silicide particles precipitate along lamellar phase boundaries of transformed β phase after aging at 750 ℃. BTi-6431 S alloy shows the best650 ℃ ultimate tensile strength(UTS) and yield strength(YS) when treated in solution treatment. However, aging treatment results in a decline in 650 ℃ ultimate tensile strength. This may be attributed to the loss of solution strengthening due to the depletion of Al, Si and Zr of the matrix caused by the precipitation of Ti;Al and(TiZr);Si;.Silicide is a brittle phase; therefore, its precipitation causes a sharp decrease in the room-temperature ductility of BTi-6431 S alloy.
基金supported by the Natural Science Foundation of Jiangxi Province of China (Grant No. 2009GZW0022)
文摘Damage tolerance of titanium alloy structures is very important for the safety of modern aircraft under complex loading and environmental conditions. However, there is no available systematic knowledge about the effect of alloy thickness under mixed-mode loading at elevated temperatures. In the present study, a newly developed fracture experimental technique based on high-temperature moiré interferometry was employed to investigate experimentally I-II mixed-mode fracture in titanium alloy TC11 of various thicknesses at room and elevated temperatures. Compact shear specimens with thickness ranging from 1.8 to 7.1 mm were tested. The effects of temperature, thickness, and loading angle on the load capacity and crack initiation angle were investigated systematically. The TC11 alloy was shown to possess varied fracture performance at elevated tem-perature, and an opposite thickness effect at room temperature. Increasing temperature would enhance the fracture load capacity of thick specimens but reduce the fracture load capacity of thin specimens. Crack initiation angles under I-II mixed-mode loading showed the thickness-temperature coupling effects. These complex effects call for new development in three-dimensional mixed-mode fracture theory and technologies for damage tolerance assessment.
基金the National Natural Science Foundation of China(Grant Nos.61701185 and 61801186)the Natural Science Foundation of Hubei Province(Grant Nos.2020CFB509 and2020CFB511)。
文摘The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge.Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) MAMs are prepared by the spark plasma sintering (SPS).Further,the influences of the Al_(2)O_(3) content on the flexural strength,thermal stability,high-temperature electrical conductivity,dielectric and MA properties are discussed.The results show that the Al_(2)O_(3) content is associated with flexural strength,high-temperature thermal stability,electrical conductivity,dielectric and MA properties.Meanwhile,the temperatureinsensitive and considerable MA properties with the minimum reflection loss (RLmin) ranging from -19.4 to -14.3 dB and the effective absorption bandwidth (EAB,RL<-5 dB) of 3.19–3.55 GHz are attained at 25°C–700°C in 8.2–12.4 GHz as the Al_(2)O_(3) content increases from 70.6 wt%to 80.6 wt%.This is ascribed to the compensating effect of the positive and negative temperature coefficient materials on the high-temperature electrical conductivity as well as the co-play of the dipolar and interfacial polarization at elevated temperatures.Consequently,Ti B2-Al_(2)O_(3)/Mg Al_(2)O_(4) ceramics exhibit the ideal prospect as the high-temperature MAMs.
基金the financial support from the Singapore Ministry of Education Academic Research Funds(R-265–000–686–114 and MOE2018-T2–1–140)。
文摘The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100℃was systematically investigated in the temperature range of 750-900℃under an initial strain rate of 10^(-4)s^(-1).A bimodalγgraindistribution microstructure of Ti Al alloy sheet,with abundant nano-scale or sub-micronγlaths embedded insideβmatrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m=0.27 at 800℃,which is the lowest temperature of superplastic deformation for Ti Al alloys attained so far.The maximum elongation reaches~360%at 900℃with an initial strain rate of 2.0×10^(-4)s^(-1).To elucidate the softening mechanism of the disorderedβphase during superplastic deformation,the changes of phase composition were investigated up to 1000℃using in situ high-temperature X-ray diffraction(XRD)in this study.The results indicate thatβphase does not undergo the transformation from an ordered L2;structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of bothγandβdynamic recrystallization(DR)after tensile tests as characterized with electron backscatter diffraction(EBSD),the superplastic deformation mechanism can be explained by the combination of DR and grain boundary slipping(GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic deformation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic Ti Al alloy.