Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and...Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles.展开更多
MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, Mat...MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, MatCloud delivers two-fold functionalities: a computational materials platform where users can do on-line job setup, job submission and monitoring only via Web browser, and a materials properties simulation database. It is developed under Chinese Materials Genome Initiative and is a China own proprietary high-throughput computational materials infrastructure. MatCloud has been on line for about one year, receiving considerable registered users, feedbacks, and encouragements. Many users provided valuable input and requirements to MatCloud. In this paper, we describe the present MatCloud, future visions, and major challenges. Based on what we have achieved, we will endeavour to further develop MatCloud in an open and collaborative manner and make MatCloud a world known China-developed novel software in the pressing area of high-throughput materials calculations and materials properties simulation database within Material Genome Initiative.展开更多
This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples...This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.展开更多
The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal-or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carb...The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal-or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carbon dioxide(CO_2) and store methane(CH4), where the latter is a kind of clean energy source with abundant reserves and lower CO_2 emission. Hundreds of thousands of porous materials can be enrolled on the candidate list, but how to quickly identify the really promising ones, or even evolve materials(namely, rational design high-performing candidates) based on the large database of present porous materials? In this context, high-throughput computational techniques, which have emerged in the past few years as powerful tools, make the targets of fast evaluation of adsorbents and evolving materials for CO_2 capture and CH_4 storage feasible. This review provides an overview of the recent computational efforts on such related topics and discusses the further development in this field.展开更多
The growth and coalescence of two microholes in copper foil were studied experimental ly by in situ tensile tests under a,scanning electronic microscope.Two microholes of 15-35μm in di- ameter were arranged in differ...The growth and coalescence of two microholes in copper foil were studied experimental ly by in situ tensile tests under a,scanning electronic microscope.Two microholes of 15-35μm in di- ameter were arranged in different distances and orientations.It was found that the mechanisms of mi crohole evolution were represented by slipping band creation,and then crack initiation and propagation along the slipping bands,in ligament.The process of microhole growth and coalescence was influenced by the inter-center distance and orientation of microholes.The critical surface of microholes at coales- cence is about 2—2.5 times that of the initial one.The variation of both the inter center distance and orientation depends on the initial angle.展开更多
The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and ...The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and electrolyte additives. With tfie development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new malerials. With the help of automatic simnlation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve perlbmmnce, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed.展开更多
A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition thresh...A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition threshold and plasma plume expansion velocity are obtained. Also, Laser induced pulse on irradiated targets are given.展开更多
The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calc...The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calcium Copper Oxide(BSCCO)are considered in the presence of electromagnetically active materials in order to mimic properly the electromagnetic environment typical of electrical machines.The characterization consists of the determining the critical current and the AC losses at different values of the frequency and the transport current.The effects induced by the proximity of the active materials are studied and some related experimental issues are analyzedc.展开更多
High-throughput computational materials design provides one efficient solution to accelerate the discovery and development of functional materials. Its core concept is to build a large quantum materials repository and...High-throughput computational materials design provides one efficient solution to accelerate the discovery and development of functional materials. Its core concept is to build a large quantum materials repository and to search for target materials with desired properties via appropriate materials descriptors in a high-throughput fashion, which shares the same idea with the materials genome approach. This article reviews recent progress of discovering and developing new functional materials using high-throughput computational materials design approach. Emphasis is placed on the rational design of high-throughput screening procedure and the development of appropriate materials descriptors, concentrating on the electronic and magnetic properties of functional materials for various types of industrial applications in nanoelectronics.展开更多
Although the efficiency of CH3 NH3 PI3 has been refreshed to 25.2%,stability and toxicity remain the main challenges for its applications.The search for novel solar-cell absorbers that are highly stable,non-toxic,inex...Although the efficiency of CH3 NH3 PI3 has been refreshed to 25.2%,stability and toxicity remain the main challenges for its applications.The search for novel solar-cell absorbers that are highly stable,non-toxic,inexpensive,and highly efficient is now a viable research focus.In this review,we summarize our recent research into the high-throughput screening and materials design of solar-cell absorbers,including single perovskites,double perovskites,and materials beyond Perovskites.BazrS3(single perovskite),Ba2 BiNbS6(double perovskite),HgAl2 Se4(spinel),and IrSb3(skutterudite)were discovered to be potential candidates in terms of their high stabilities,appropriate bandgaps,small carrier effective masses,and strong optical absorption.展开更多
Experimental research center and research oriented model, is to test basic skills and the application of technology as the main line,to cultivate students’ comprehensive experimental skills, to add professional and t...Experimental research center and research oriented model, is to test basic skills and the application of technology as the main line,to cultivate students’ comprehensive experimental skills, to add professional and technical capacity and integrated design experiment teachingpractice session, and introduce scientifi c research and experimental teaching, training students to scientifi c thinking to teaching model whichanalyze and solve problems. This mode has positive and stimulating effect on comprehensive quality and innovative ability for students usingmodern science and technology to solve practical engineering problems .this paper discusses the research status and the innovative application ofmaterials science experiments and teaching professional research-oriented, and proposes an effective way to improve this kind of new model.展开更多
A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the ex...A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.展开更多
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ...The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instru...Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.展开更多
Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with ...Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.展开更多
The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can...The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.展开更多
This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 8...This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs I, IV and VI, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The absolute value of delaying ratio of the curve reduces with time running and material fining. It is characterized by substitution of situation to time.展开更多
The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of th...The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of the dried materials on drying process. Based on the experimental data, a corresponding mathematical model is presented. As a conclusion, a higher inlet air temperature and a reasonable bed height should be used so as to increase the dring rate and to improve the product quality.展开更多
基金the Science Challenge Project(TZ2018004)the National Natural Science Foundation of China(21875228 and 21702195)for financial support。
文摘Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701702 and 2016YFB0700501)the National Natural Science Foundation of China(Grant Nos.61472394 and 11534012)Science and Technology Department of Sichuan Province,China(Grant No.2017JZ0001)
文摘MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, MatCloud delivers two-fold functionalities: a computational materials platform where users can do on-line job setup, job submission and monitoring only via Web browser, and a materials properties simulation database. It is developed under Chinese Materials Genome Initiative and is a China own proprietary high-throughput computational materials infrastructure. MatCloud has been on line for about one year, receiving considerable registered users, feedbacks, and encouragements. Many users provided valuable input and requirements to MatCloud. In this paper, we describe the present MatCloud, future visions, and major challenges. Based on what we have achieved, we will endeavour to further develop MatCloud in an open and collaborative manner and make MatCloud a world known China-developed novel software in the pressing area of high-throughput materials calculations and materials properties simulation database within Material Genome Initiative.
基金Project supported by the National Natural Science Foundation of China(Grant No.51772321)the Beijing Science and Technology Project(Grant No.D171100005517001)+1 种基金the National Key Research and Development Plan(Grant No.2017YFB0701602)the Youth Innovation Promotion Association(Grant No.2016005)
文摘This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.
基金supported by the Natural Science Foundation of China (Nos.21706106,21536001 and 21322603)the National Key Basic Research Program of China ("973") (No.2013CB733503)+1 种基金the Natural Science Foundation of Jiangsu Normal University(16XLR011)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal-or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carbon dioxide(CO_2) and store methane(CH4), where the latter is a kind of clean energy source with abundant reserves and lower CO_2 emission. Hundreds of thousands of porous materials can be enrolled on the candidate list, but how to quickly identify the really promising ones, or even evolve materials(namely, rational design high-performing candidates) based on the large database of present porous materials? In this context, high-throughput computational techniques, which have emerged in the past few years as powerful tools, make the targets of fast evaluation of adsorbents and evolving materials for CO_2 capture and CH_4 storage feasible. This review provides an overview of the recent computational efforts on such related topics and discusses the further development in this field.
文摘The growth and coalescence of two microholes in copper foil were studied experimental ly by in situ tensile tests under a,scanning electronic microscope.Two microholes of 15-35μm in di- ameter were arranged in different distances and orientations.It was found that the mechanisms of mi crohole evolution were represented by slipping band creation,and then crack initiation and propagation along the slipping bands,in ligament.The process of microhole growth and coalescence was influenced by the inter-center distance and orientation of microholes.The critical surface of microholes at coales- cence is about 2—2.5 times that of the initial one.The variation of both the inter center distance and orientation depends on the initial angle.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234013 and 51172274)the National High Technology Research and Development Program of China(Grant No.2015AA034201)
文摘The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and electrolyte additives. With tfie development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new malerials. With the help of automatic simnlation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve perlbmmnce, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed.
文摘A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition threshold and plasma plume expansion velocity are obtained. Also, Laser induced pulse on irradiated targets are given.
文摘The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calcium Copper Oxide(BSCCO)are considered in the presence of electromagnetically active materials in order to mimic properly the electromagnetic environment typical of electrical machines.The characterization consists of the determining the critical current and the AC losses at different values of the frequency and the transport current.The effects induced by the proximity of the active materials are studied and some related experimental issues are analyzedc.
基金support by National Science Foundation under award number ACI-1550404American Chemical Society Petroleum Research Fund under the award number 55481-DNI6+1 种基金Global Research Outreach(GRO)Program of Samsung Advanced Institute of Technology under the award number 20164974the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering under the Office of Naval Research grant N00014-16-1-2569
文摘High-throughput computational materials design provides one efficient solution to accelerate the discovery and development of functional materials. Its core concept is to build a large quantum materials repository and to search for target materials with desired properties via appropriate materials descriptors in a high-throughput fashion, which shares the same idea with the materials genome approach. This article reviews recent progress of discovering and developing new functional materials using high-throughput computational materials design approach. Emphasis is placed on the rational design of high-throughput screening procedure and the development of appropriate materials descriptors, concentrating on the electronic and magnetic properties of functional materials for various types of industrial applications in nanoelectronics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700700)the National Natural Science Foundation of China(Grant Nos.11674237,11974257,and 51602211)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,China。
文摘Although the efficiency of CH3 NH3 PI3 has been refreshed to 25.2%,stability and toxicity remain the main challenges for its applications.The search for novel solar-cell absorbers that are highly stable,non-toxic,inexpensive,and highly efficient is now a viable research focus.In this review,we summarize our recent research into the high-throughput screening and materials design of solar-cell absorbers,including single perovskites,double perovskites,and materials beyond Perovskites.BazrS3(single perovskite),Ba2 BiNbS6(double perovskite),HgAl2 Se4(spinel),and IrSb3(skutterudite)were discovered to be potential candidates in terms of their high stabilities,appropriate bandgaps,small carrier effective masses,and strong optical absorption.
文摘Experimental research center and research oriented model, is to test basic skills and the application of technology as the main line,to cultivate students’ comprehensive experimental skills, to add professional and technical capacity and integrated design experiment teachingpractice session, and introduce scientifi c research and experimental teaching, training students to scientifi c thinking to teaching model whichanalyze and solve problems. This mode has positive and stimulating effect on comprehensive quality and innovative ability for students usingmodern science and technology to solve practical engineering problems .this paper discusses the research status and the innovative application ofmaterials science experiments and teaching professional research-oriented, and proposes an effective way to improve this kind of new model.
文摘A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.
基金supported by the Hebei Province Postdoctoral Merit Funding Program(Grant No.:B2022005004)the Science and Tech-nology Nova Plan of Hebei University of Technology(Grant No.:JBKYXX2207)+2 种基金the National Natural Science Foundation of China(Grant No.:51978231)the S&T Program of Hebei(Project No.:216Z4502G)the Natural Science Foundation of Hebei Province(Grant No.:E2020202196).
文摘The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.
文摘Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters.
文摘Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.
基金financially supported by the National Natural Science Foundation of China(No.51778358)the Shanghai Municipality Natural Science Foundation(No.21ZR1434400)Sponsored by Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,Chongqing University,Chongqing 400045,China(LNTCCMA-20210103).
文摘The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.
基金Joint project by National Natural Science Foundation of China and Ministry of Water Resources of China, No.59890200 National Na
文摘This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs I, IV and VI, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The absolute value of delaying ratio of the curve reduces with time running and material fining. It is characterized by substitution of situation to time.
基金This work is financed by an operating grant from the Doctoral Foundation Program of the Miniscy of National Education, China.
文摘The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of the dried materials on drying process. Based on the experimental data, a corresponding mathematical model is presented. As a conclusion, a higher inlet air temperature and a reasonable bed height should be used so as to increase the dring rate and to improve the product quality.