The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centri...The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centrifugal casting technology was introduced.This research comprehensively examined the influence of pouring time on the microstructure and mechanical performance of the castings,employing both experimental approaches and ProCast simulation methodologies.The findings indicate that prolonging the pouring time facilitates a microstructural evolution from coarse columnar grains to refined equiaxed grains.Under the condition of pouring temperature of 1,600℃,rotation speed of 800 r·min^(-1) and pouring time of 6 s,the tensile strength of Ti-46Al alloy at room temperature reaches 650 MPa,and the tensile strength at 800℃ reaches 705 MPa,which is significantly higher than that of traditional as-cast Ti-Al alloy.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the ...The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.展开更多
Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are i...Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.展开更多
In this study,the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions.To accomplish this,a comprehensive numerical inves...In this study,the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions.To accomplish this,a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software,focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements.The simulations utilized the finite elementmethod to address turbulent flowwithin the tube by solving partial differential equations,encompassing Re numbers spanning from 3000 to 8000.The study specifically examined single-phase flow conditions,with water utilized as the cooling fluid.The results of the investigation indicated that increasing the Reynolds number resulted in higher average Nusselt numbers,pressure drops,the overall performance criterion,and a reduction in average thermal resistance across all models analyzed.Notably,both proposedmodels demonstrated improved heat transfer when compared to the conventional model.Out of all the models evaluated,the tube featuring staggered dimples(Model B)demonstrated the most notable improvement in the Nu number.It exhibited an enhancement of approximately twice the value compared to the conventional model.The mean thermal resistance for the tube with dimples in the staggered arrangement(Model B)is 0.0057 k/W,compared to 0.0118 k/W for the traditional model.The maximum overall performance criterion for Model-A-and Model-Bis 1.22 and 1.33,respectively.展开更多
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str...The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.展开更多
BACKGROUND Esophageal cancer(EC)is an aggressive malignancy with low survival(10%-30%).Nutritional problems are present throughout the perioperative period and are key to prognosis.Home enteral nutrition appears to im...BACKGROUND Esophageal cancer(EC)is an aggressive malignancy with low survival(10%-30%).Nutritional problems are present throughout the perioperative period and are key to prognosis.Home enteral nutrition appears to improve the nutritional status of patients with EC.Few studies have addressed the experience of patients administering their own nutritional fluids and managing their own feeding tubes at home.The aim of this study was to explore the real-life experience of self-management of feeding tubes in patients at home after EC surgery in the first 3 months after discharge following surgery.AIM To explore feeding tube self-management experience of patients at home 3 months after discharge following EC surgery.METHODS Face-to-face semi-structured interviews were conducted with 18 patients using a feeding tube at home after EC surgery.Thematic analysis of the recordings identified themes related to feeding tube self-management.RESULTS Patients expressed similar feelings about their tube management experiences concerning three contextualized themes:Self-management dilemmas,distressing experiences,and self-management facilitators.CONCLUSION There are many dilemmas and problems in self-managing feeding tubes in postoperative homebound patients with EC.Clinical staff should provide guidance to promote a positive change in self-management behavior.展开更多
The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,tra...The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.展开更多
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles...Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles with deionized water as a medium are experimentally studied at atmospheric and sub-atmospheric pressures,respectively.The experimental results indicate that the boiling heat transfer coefficients of the two types of tube bundles increase with the increase in pressure under vacuum conditions as they behave under ordinary pressure.As the pressure varies from 10 to 100 kPa,it also can be seen that the heat transfer coefficient of the sintered porous surface tube is increased by 0.2 to 4 times compared with the smooth one under the same operating parameters.In addition,the experimental data show that a definite bundle effect exists in both sintered porous surface tubes and smooth tubes under vacuum conditions.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. P...Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. Pollen germination percentage reduced dramatically when nojirimycin was applied in the culture medium. In case that nojirimycin was added at 0 or 1 h after the onset of incubation, the inhibition rate was 99.6% and 91.4%, respectively. When 3 mmol/L of nojirimycin was applied in the liquid medium at 0, 1, 1.5 and 2 h after the onset of incubation, the growth of pollen tubes was interrupted, which resulted in the morphological change of the pollen tubes such as the newly grown portion of pollen tubes being bent, curved and swollen. Tracing the growth pattern of the individual pollen tube grown in semi_solid medium by video microscopy, the authors demonstrated that pollen tube growth rate was strongly inhibited by nojirimycin at concentrations ranged from 0.003 to 3 mmol/L. Moreover, the cytoplasmic arrangement and the morphology of the pollen tubes were also affected by nojirimycin. The growth inhibition brought about by nojirimycin was reversible. These results indicated that β_glucanases, which degrade 1,3_β_glucan and/or 1,4_β_glucan or 1,3:1,4_β_glucan constructed in the cell wall, are involved in pollen germination and pollen tube growth. It provides new insight into an understanding of the contribution of β_glucanases to the cell wall extensibility and the crucial role of cell wall in regards to the regulation of pollen tube growth.展开更多
In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
BACKGROUND Emergency surgical resection is a standard treatment for right-sided malignant colonic obstruction; however, the procedure is associated with high rates of mortality and morbidity. Although a bridge to surg...BACKGROUND Emergency surgical resection is a standard treatment for right-sided malignant colonic obstruction; however, the procedure is associated with high rates of mortality and morbidity. Although a bridge to surgery can be created to obviate the need for emergency surgery, its effects on long-term outcomes and the most practical management strategies for right-sided malignant colonic obstruction remain unclear.AIM To determine the appropriate management approach for right-sided malignant colonic obstruction.METHODS Forty patients with right-sided malignant colonic obstruction who underwent curative resection from January 2007 to April 2017 were included in the study.We compared the perioperative and long-term outcomes of patients who received bridges to surgery established using decompression tubes and those created using self-expandable metallic stents(SEMS). The primary outcome was the overall survival duration(OS) and the secondary endpoints were the diseasefree survival(DFS) duration and the preoperative and postoperative morbidity rates. Analysis was performed on an intention-to-treat basis.RESULTS There were 21 patients in the decompression tube group and 19 in the SEMS group. There were no significant differences in the perioperative morbidity rates of the two groups. The OS rate was significantly higher in the decompression tube group than in the SEMS group(5-year OS rate; decompression tube 79.5%,SEMS 32%, P = 0.043). Multivariate analysis revealed that the bridge to surgery using a decompression tube was significantly associated with the OS(hazard ratio, 17.41; P = 0.004). The 3-year DFS rate was significantly higher in thedecompression tube group than in the SEMS group(68.9% vs 45.9%; log-rank test,P = 0.032). A propensity score–adjusted analysis also demonstrated that the prognosis was significantly better in the decompression tube group than in the SEMS group.CONCLUSION The bridge to surgery using trans-nasal and trans-anal decompression tubes for right-sided malignant colonic obstruction is safe and may improve long-term outcomes.展开更多
基金financially supported by the Natural Science Foundation of China(52071065)the Fundamental Research Funds for the Central Universities(N2007007)the National Key R&D Program of China(2016YFB-0301201)。
文摘The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centrifugal casting technology was introduced.This research comprehensively examined the influence of pouring time on the microstructure and mechanical performance of the castings,employing both experimental approaches and ProCast simulation methodologies.The findings indicate that prolonging the pouring time facilitates a microstructural evolution from coarse columnar grains to refined equiaxed grains.Under the condition of pouring temperature of 1,600℃,rotation speed of 800 r·min^(-1) and pouring time of 6 s,the tensile strength of Ti-46Al alloy at room temperature reaches 650 MPa,and the tensile strength at 800℃ reaches 705 MPa,which is significantly higher than that of traditional as-cast Ti-Al alloy.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.
文摘Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.
文摘In this study,the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions.To accomplish this,a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software,focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements.The simulations utilized the finite elementmethod to address turbulent flowwithin the tube by solving partial differential equations,encompassing Re numbers spanning from 3000 to 8000.The study specifically examined single-phase flow conditions,with water utilized as the cooling fluid.The results of the investigation indicated that increasing the Reynolds number resulted in higher average Nusselt numbers,pressure drops,the overall performance criterion,and a reduction in average thermal resistance across all models analyzed.Notably,both proposedmodels demonstrated improved heat transfer when compared to the conventional model.Out of all the models evaluated,the tube featuring staggered dimples(Model B)demonstrated the most notable improvement in the Nu number.It exhibited an enhancement of approximately twice the value compared to the conventional model.The mean thermal resistance for the tube with dimples in the staggered arrangement(Model B)is 0.0057 k/W,compared to 0.0118 k/W for the traditional model.The maximum overall performance criterion for Model-A-and Model-Bis 1.22 and 1.33,respectively.
基金financial support from the National Key Research and Development Program of China(2021YFB 3501501)the National Natural Science Foundation of China(No.22225803,22038001,22108007 and 22278011)+1 种基金Beijing Natural Science Foundation(No.Z230023)Beijing Science and Technology Commission(No.Z211100004321001).
文摘The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.
文摘BACKGROUND Esophageal cancer(EC)is an aggressive malignancy with low survival(10%-30%).Nutritional problems are present throughout the perioperative period and are key to prognosis.Home enteral nutrition appears to improve the nutritional status of patients with EC.Few studies have addressed the experience of patients administering their own nutritional fluids and managing their own feeding tubes at home.The aim of this study was to explore the real-life experience of self-management of feeding tubes in patients at home after EC surgery in the first 3 months after discharge following surgery.AIM To explore feeding tube self-management experience of patients at home 3 months after discharge following EC surgery.METHODS Face-to-face semi-structured interviews were conducted with 18 patients using a feeding tube at home after EC surgery.Thematic analysis of the recordings identified themes related to feeding tube self-management.RESULTS Patients expressed similar feelings about their tube management experiences concerning three contextualized themes:Self-management dilemmas,distressing experiences,and self-management facilitators.CONCLUSION There are many dilemmas and problems in self-managing feeding tubes in postoperative homebound patients with EC.Clinical staff should provide guidance to promote a positive change in self-management behavior.
文摘The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
基金The National Natural Science Foundation of China(No.50706012)
文摘Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles with deionized water as a medium are experimentally studied at atmospheric and sub-atmospheric pressures,respectively.The experimental results indicate that the boiling heat transfer coefficients of the two types of tube bundles increase with the increase in pressure under vacuum conditions as they behave under ordinary pressure.As the pressure varies from 10 to 100 kPa,it also can be seen that the heat transfer coefficient of the sintered porous surface tube is increased by 0.2 to 4 times compared with the smooth one under the same operating parameters.In addition,the experimental data show that a definite bundle effect exists in both sintered porous surface tubes and smooth tubes under vacuum conditions.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
文摘Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. Pollen germination percentage reduced dramatically when nojirimycin was applied in the culture medium. In case that nojirimycin was added at 0 or 1 h after the onset of incubation, the inhibition rate was 99.6% and 91.4%, respectively. When 3 mmol/L of nojirimycin was applied in the liquid medium at 0, 1, 1.5 and 2 h after the onset of incubation, the growth of pollen tubes was interrupted, which resulted in the morphological change of the pollen tubes such as the newly grown portion of pollen tubes being bent, curved and swollen. Tracing the growth pattern of the individual pollen tube grown in semi_solid medium by video microscopy, the authors demonstrated that pollen tube growth rate was strongly inhibited by nojirimycin at concentrations ranged from 0.003 to 3 mmol/L. Moreover, the cytoplasmic arrangement and the morphology of the pollen tubes were also affected by nojirimycin. The growth inhibition brought about by nojirimycin was reversible. These results indicated that β_glucanases, which degrade 1,3_β_glucan and/or 1,4_β_glucan or 1,3:1,4_β_glucan constructed in the cell wall, are involved in pollen germination and pollen tube growth. It provides new insight into an understanding of the contribution of β_glucanases to the cell wall extensibility and the crucial role of cell wall in regards to the regulation of pollen tube growth.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
文摘BACKGROUND Emergency surgical resection is a standard treatment for right-sided malignant colonic obstruction; however, the procedure is associated with high rates of mortality and morbidity. Although a bridge to surgery can be created to obviate the need for emergency surgery, its effects on long-term outcomes and the most practical management strategies for right-sided malignant colonic obstruction remain unclear.AIM To determine the appropriate management approach for right-sided malignant colonic obstruction.METHODS Forty patients with right-sided malignant colonic obstruction who underwent curative resection from January 2007 to April 2017 were included in the study.We compared the perioperative and long-term outcomes of patients who received bridges to surgery established using decompression tubes and those created using self-expandable metallic stents(SEMS). The primary outcome was the overall survival duration(OS) and the secondary endpoints were the diseasefree survival(DFS) duration and the preoperative and postoperative morbidity rates. Analysis was performed on an intention-to-treat basis.RESULTS There were 21 patients in the decompression tube group and 19 in the SEMS group. There were no significant differences in the perioperative morbidity rates of the two groups. The OS rate was significantly higher in the decompression tube group than in the SEMS group(5-year OS rate; decompression tube 79.5%,SEMS 32%, P = 0.043). Multivariate analysis revealed that the bridge to surgery using a decompression tube was significantly associated with the OS(hazard ratio, 17.41; P = 0.004). The 3-year DFS rate was significantly higher in thedecompression tube group than in the SEMS group(68.9% vs 45.9%; log-rank test,P = 0.032). A propensity score–adjusted analysis also demonstrated that the prognosis was significantly better in the decompression tube group than in the SEMS group.CONCLUSION The bridge to surgery using trans-nasal and trans-anal decompression tubes for right-sided malignant colonic obstruction is safe and may improve long-term outcomes.