In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding car...A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.展开更多
The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of ce...The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.展开更多
The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete unders...The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.展开更多
Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the el...Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.展开更多
The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cemen...The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cement, as well as the texture of dehydrated bodies of PVA, MC, and the potyblend solutions, were investigated with SEM. The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC. The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz. The key factor of forming the coherent interface is not the neutralization reaction between H + from hydrolysis of quarts: and OH- from hydration of cement, but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and onions from hydrolysis of quartz and hydration of cement, respectively. The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- onions are bonded with the hydrated cations such as Ca2+ and Al3+ , which is confirmed by the gel containing Ca and Si on the quartz surface.展开更多
In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber ...In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.展开更多
Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those...Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.展开更多
The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can se...The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.展开更多
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the...N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.展开更多
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and...Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.展开更多
Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing syste...Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.展开更多
The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to asse...The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.展开更多
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p...The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.展开更多
One of the biggest problems responsible of the nonrenewable resources depletion and environmental issues is the construction industries,which generates large amounts of mineral waste and harmful emitted gases.Therefor...One of the biggest problems responsible of the nonrenewable resources depletion and environmental issues is the construction industries,which generates large amounts of mineral waste and harmful emitted gases.Therefore,these problems generated the necessity to search for alternative natural building materials based on renewable resources.To study the mechanical characteristics and microstructural behavior of the concrete reinforced by raw wheat straw basalt fiber composite(RWSBFc),and treated rice straw basalt fiber composite(TRSBFc),a number of experimental tests were carried out with different composites ratios.Concrete compressive strength,splitting tensile strength,and flexural strength tests were considered as main parameters.The results showed that the RWSBFC has a positive effect on concrete flexural strength by increasing of 12.58%,compared with control samples.Also,it showed good enhancement in concrete flexibility and ductility.In contrast,both RWSBFc and TRSBFc showed uneven deterioration in concrete compressive strength and splitting tensile strength.To avoid the deterioration in compressive strengths of the various composites types,some improvement methods such as processors for the used straw,and adding some additives were recommended.展开更多
Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-base...Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose,and the thermal insulating capacity of the material would be improved with this texture.Using these methods,the industrial by-product and engineering waste could be cycled in an efficient way.Moreover,after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again.While the porous texture is not favorable for the mechanical strength and long-term durability in a cold environment.To balance the above three requirements from two opposite directions,different processing methods were applied to create the thermal insulation concrete/mortar.Firstly,the organic/inorganic lightweight aggregate,including the Expanded Polystyrene(EPS),Expanded Perlite(EP),and Ceramsite(CRMST)particles,were applied to create the Lightweight Aggregate Concrete(LWAC).As the comparative tests,the expanded Superabsorbent Polymer(SAP)hydrogel and Air-Entraining Agent(AEA)were also introduced to create the porous mortar.The above concrete/mortar was tested in the normal state and under the Freeze-Thaw cycle to explore the engineering performance in cold regions.During the experimenting process,the thermal insulation,mechanical strength,and frost resistance of these cement-based composites were investigated,and an optimal thermal insulation concrete/mortar was determined.展开更多
Alum sludge is a typical by-product of drinking water treatment processes.Most sludge is disposed of at landfill sites,and such a disposal method may cause significant environmental concern due to its vast amount.This...Alum sludge is a typical by-product of drinking water treatment processes.Most sludge is disposed of at landfill sites,and such a disposal method may cause significant environmental concern due to its vast amount.This paper assessed the feasibility of reusing sludge as a supplementary cementitious material,which could efficiently exhaust stockpiled sludge.Specifically,the pozzolanic reactivity of sludge at different temperatures,the reaction mechanism of the sludge-cement binder,and the resistance of sludge-derived mortar to microbially induced corrosion were investigated.The obtained results indicated that 800℃ was the optimal calcination temperature for sludge.Mortar containing sludge up to 30%by weight showed comparable physical properties at a curing age of 90 days.Mortar with 10%cement replaced by sludge can significantly improve the resistance to biogenic corrosion due to the formation of Al-bearing phases with high resistance to acidic media,e.g.,Ca_(4)Al_(2)O_(7)·xH_(2)O and strätlingite.展开更多
In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high stre...In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).展开更多
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金Funded by the National Natural Science Foundation of China(Nos. 51178148,50808055)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No.HIT.NSRIF.2009096)the Program for New Century Excellent Talents University of China(No.NCET-0798)
文摘A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.
基金Funded by the National Natural Science Foundation of China(No.50878170 and No. 10672128)
文摘The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.
基金Funded by the National Natural Science Foundations of China(Nos.51478278 and 51408380)the Natural Science Foundation of Hebei Province(No.E2014210149)Higher Education Science and Technology Research Project of Hebei Province(No.ZD2016065)
文摘The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.
基金Funded by the National Natural Science Foundation of China(Nos.51478164 and 52079048)the Key Research&Development Plan of Jiangsu Province,China(No.BE2021704)。
文摘Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.
基金Funded by Natural Science Foundation of China (No. 49802004)
文摘The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cement, as well as the texture of dehydrated bodies of PVA, MC, and the potyblend solutions, were investigated with SEM. The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC. The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz. The key factor of forming the coherent interface is not the neutralization reaction between H + from hydrolysis of quarts: and OH- from hydration of cement, but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and onions from hydrolysis of quartz and hydration of cement, respectively. The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- onions are bonded with the hydrated cations such as Ca2+ and Al3+ , which is confirmed by the gel containing Ca and Si on the quartz surface.
文摘In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.
基金supported by a grant from the CMMI program at the United States National Science Foundation(1634694).
文摘Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.
基金This work was supported by NSFC(No.59908007)a foundation for phosphor plan from the Science and Technology Committee of Shanghai Municipality(No.01QE14052)The financial support from the Foundation for the University Key Studies of Shanghai was also gratefully acknowledged.
文摘The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.
基金Funded by the National Basic Research Program of China (No.2009CB623203)the National High-Tech R&D Program of China (No.2008AA030794)the Postgraduates Research Innovation in University of Jiangsu Province in China (No.CX10B-064Z)
文摘N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.
基金Funded by the National Key Research and Development Program of China(No.2018YFC0705400)National Natural Science Foundation of China(No.51678142)the Fundamental Research Funds for the Central Universities。
文摘Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.
文摘Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.
文摘The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.
文摘The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.
基金supported in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant 1105007002.
文摘One of the biggest problems responsible of the nonrenewable resources depletion and environmental issues is the construction industries,which generates large amounts of mineral waste and harmful emitted gases.Therefore,these problems generated the necessity to search for alternative natural building materials based on renewable resources.To study the mechanical characteristics and microstructural behavior of the concrete reinforced by raw wheat straw basalt fiber composite(RWSBFc),and treated rice straw basalt fiber composite(TRSBFc),a number of experimental tests were carried out with different composites ratios.Concrete compressive strength,splitting tensile strength,and flexural strength tests were considered as main parameters.The results showed that the RWSBFC has a positive effect on concrete flexural strength by increasing of 12.58%,compared with control samples.Also,it showed good enhancement in concrete flexibility and ductility.In contrast,both RWSBFc and TRSBFc showed uneven deterioration in concrete compressive strength and splitting tensile strength.To avoid the deterioration in compressive strengths of the various composites types,some improvement methods such as processors for the used straw,and adding some additives were recommended.
基金The research project was supported by the Natural Science Foundation of China(Grant Nos.51972209,41801033,41801043)Young doctor Foundation of Education Department of Gansu Province(2021QB-039)+1 种基金Basic Research Innovation Group of Gansu Province(20JR5RA478)Industrial Support Program of Higher Education of Gansu Province(2020C−40).
文摘Thermal insulation is an important indicator to evaluate the construction material in cold region engineering.As we know,adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose,and the thermal insulating capacity of the material would be improved with this texture.Using these methods,the industrial by-product and engineering waste could be cycled in an efficient way.Moreover,after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again.While the porous texture is not favorable for the mechanical strength and long-term durability in a cold environment.To balance the above three requirements from two opposite directions,different processing methods were applied to create the thermal insulation concrete/mortar.Firstly,the organic/inorganic lightweight aggregate,including the Expanded Polystyrene(EPS),Expanded Perlite(EP),and Ceramsite(CRMST)particles,were applied to create the Lightweight Aggregate Concrete(LWAC).As the comparative tests,the expanded Superabsorbent Polymer(SAP)hydrogel and Air-Entraining Agent(AEA)were also introduced to create the porous mortar.The above concrete/mortar was tested in the normal state and under the Freeze-Thaw cycle to explore the engineering performance in cold regions.During the experimenting process,the thermal insulation,mechanical strength,and frost resistance of these cement-based composites were investigated,and an optimal thermal insulation concrete/mortar was determined.
基金funded by ARC Research Hub for Nanoscience-based Construction Material Manufacturing,Grant No.IH150100006General Project of National Natural Science Foundation of China (No.51778523)SA Water for the research scholarship and financial support for this project.
文摘Alum sludge is a typical by-product of drinking water treatment processes.Most sludge is disposed of at landfill sites,and such a disposal method may cause significant environmental concern due to its vast amount.This paper assessed the feasibility of reusing sludge as a supplementary cementitious material,which could efficiently exhaust stockpiled sludge.Specifically,the pozzolanic reactivity of sludge at different temperatures,the reaction mechanism of the sludge-cement binder,and the resistance of sludge-derived mortar to microbially induced corrosion were investigated.The obtained results indicated that 800℃ was the optimal calcination temperature for sludge.Mortar containing sludge up to 30%by weight showed comparable physical properties at a curing age of 90 days.Mortar with 10%cement replaced by sludge can significantly improve the resistance to biogenic corrosion due to the formation of Al-bearing phases with high resistance to acidic media,e.g.,Ca_(4)Al_(2)O_(7)·xH_(2)O and strätlingite.
文摘In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).