期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel 被引量:4
1
作者 Kai Lan Wang Ding Yi-tao Yang 《China Foundry》 SCIE CAS CSCD 2023年第4期329-338,共10页
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector... Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively. 展开更多
关键词 low alloy wear-resistant steel quenching temperature cooling condition PRECIPITATE retained austenite wear resistance
下载PDF
MICROSTRUCTURES OF A NOVEL HIGH STRENGTH AND WEAR-RESISTING ZINC ALLOY 被引量:7
2
作者 Li Yuanyuan Xia Wei +2 位作者 Ngai Tungwai Leo Luo Junming Zheng Lingyi(Department of Mechanical Engineering,South China University of Technology, Guangzhou 51064) 《中国有色金属学会会刊:英文版》 EI CSCD 1995年第4期84-88,132,共6页
MICROSTRUCTURESOFANOVELHIGHSTRENGTHANDWEAR-RESISTINGZINCALLOYLiYuanyuan;XiaWei;NgaiTungwaiLeo;LuoJunming;Zhe... MICROSTRUCTURESOFANOVELHIGHSTRENGTHANDWEAR-RESISTINGZINCALLOYLiYuanyuan;XiaWei;NgaiTungwaiLeo;LuoJunming;ZhengLingyi(Departme... 展开更多
关键词 ZINC alloy microstructure STRENGTH wear-resistANCE
下载PDF
The Effects of WC on the Microstructures and Wear Resistance of FeCoCrNiB_(0.2) High Entropy Alloy
3
作者 BAO Yefeng GUO Linpo +4 位作者 ZHONG Chonghui XIE Bingqi WANG Zirui SONG Qining JIANG Yongfeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期416-422,共7页
To improve the wear resistance of the FeCoCrNiB_(0.2)high entropy alloy(HEA),the FeCoCrNiB_(0.2)(WC_(0))and FeCoCrNiB_(0.2)+20wt%WC(WC_(20))HEA coatings were prepared on Q235 steel by laser cladding(LC).The microstruc... To improve the wear resistance of the FeCoCrNiB_(0.2)high entropy alloy(HEA),the FeCoCrNiB_(0.2)(WC_(0))and FeCoCrNiB_(0.2)+20wt%WC(WC_(20))HEA coatings were prepared on Q235 steel by laser cladding(LC).The microstructure,hardness,and tribometer of the HEA coatings were investigated using scanning electron microscopy with spectroscopy(SEM/EDS),X-ray diffraction(XRD),vickers microhardness tester,and pin-on-disc tribometer,respectively.The experimental results show that the WC0HEA coating comprises a simple BCC phase mixed with an M_(2)B phase.Adding 20wt%WC,the WC_(20)HEA coating is composed of a simple BCC phase mixed with the Cr_(23)C_(6)carbide phase.The microstructure of the WC_(20)HEA coating is simple,which consists of equiaxed grain and dendritic.The microhardness also increases from 625.5HV to 806.0HV,and the wear mass loss correspondingly decreases from 30.9 to 14.9 mg.W and C atoms formed by WC dissolution are mainly dissolved in the BCC phase,which leads to the solution strengthening effect.Besides,Cr_(23)C_(6)carbides inhibit the growth of the grains,play the role of fine-grain strengthening,and further improve the hardness and wear resistance of the HEA coating. 展开更多
关键词 high-entropy alloys laser processing and cladding MICROSTRUCTURES hardness wear-resistance
下载PDF
Electroless Ni-P Deposition on Magnesium Alloy from a Sulfate Bath 被引量:1
4
作者 李光玉 连建设 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期60-64,共5页
A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed. The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occl... A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed. The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occluding the micro holes of the cast magnesium alloy and interdicting the bubble formation in the Ni-P coating during plating process. And pickling pretreatment can provide a better adhesion between the Ni-P deposition and AZ91D substrate. The deposition speed of the Ni-P coating is 29 μm/h. The technology is employed to AZ91D magnesium alloy automobile parts and can provide high hardness and high wear-resistant. The weight losses of Ni-P plated and heat-treated Ni-P plated magnesium alloy specimen are only about 1/6 and 1/10 that of bare magnesium alloy specimen after 10 min abrasion wear, respectively. The hardness of the electroless Ni-P plated brake pedal support brackets is 674.1 VHN and 935.7 VHN after 2 hours heat treatments at 180 C. The adhesion of Ni-P coatings on magnesium alloy substrates meets the demands of ISO Standards 2819. The technology is environment friendly and cannot cause hazard to environment because of absence of chromate in the whole process. 展开更多
关键词 magnesium alloy electroless deposition adhesion wear-resisting
下载PDF
Wear-resistance Performance of Spray-welding Coating by Plasma Weld-surfacing 被引量:1
5
作者 祝若君 高伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期414-418,共5页
Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool su... Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool surface properties were discovered. The wear resistance properties were investigated on the impact abrasive wear tester. The experimental results show that in terms of microstructure, there exists the shape of herringbone, spider mesh, broken flower structures in coatings. In addition, fusion area of four specimens surfacing welding layer displays a large number of acicular martensite with a small amount of austenite. The coating mainly consists of Ni-Cr-Fe austenitic phase and the other precipitates. TiC density is smaller, its content is less in alloy powder, in the process of surfacing welding, TiC is melted fully, which is mainly distributed in surface layer and middle layer of hard facing layer. The content of TiC gradually reduces from surface layer of hard facing layer to the fusion area. Compared to TiC, the density of tungsten carbide and chromium carbide is larger, there exist tungsten carbide and chromium carbide particles, which are not completely melted near the fusion area. The micro-hardness presents gradient change from the fusion area to the surface layer of hard facing layer, and the hardness of the middle layer is slightly lower than that of the fusion area, and the hardness increases near the surface layer. 展开更多
关键词 plasma-transferred arc weld-surfacing alloy powder microstructure wear-resistance
下载PDF
Microstructure and Properties of ZA-27TiRE Alloy
6
作者 赵显欧 胡汉起 +2 位作者 王佩君 杨国均 韩青有 《Rare Metals》 SCIE EI CAS CSCD 1993年第1期16-20,共5页
The influence of RE and Tion ZA-27 casting alloy was studied. The results show that RE and Ti refine microstructure of the alloy and improve its mechanical properties and wear-resistance, which make it possible to use... The influence of RE and Tion ZA-27 casting alloy was studied. The results show that RE and Ti refine microstructure of the alloy and improve its mechanical properties and wear-resistance, which make it possible to use ZA-27TiRE casting alloy in the field of artificial limb industry. 展开更多
关键词 Zn-Al alloy Mechanical properties wear-resistANCE Ti RE
下载PDF
New Mg_2Si based Alloy for Automobile Engine Cylinder Liner
7
作者 张道文 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期797-800,共4页
New Mg2Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg2Si were produced at lower temperature while MgO were produced at higher temperature. ... New Mg2Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg2Si were produced at lower temperature while MgO were produced at higher temperature. Microstructure image showed that at sintering temperature of 855K, Mg2Si were mostly synthesized with the reaction of purity magnesia powder and silicon powder. Hardness and wear tests proved that the new synthetic silicon magnesium alloy had higher hardness and good wear resistance. Under the same testing conditions, it is found that the hardness of the new material is 420.50, and pure magnesium is only 41.65.In the same experiments it is also found that under the same pressure, pure magnesium alloys than silicon wearing capacity of pure magnesium is 2 times as high that of Mg2Si based alloy. It shows that Mg2Si based alloy is the ideal material for the wear parts of car engine cylinder liner because of its small density, stable dimension, high hardness and wear-resisting. 展开更多
关键词 cylinder liner Mg2Si based alloy HARDNESS wear-resisting
下载PDF
Revealing effect of Al content on oxidation of novel Co-Cr-Nb-W carbide-strengthened superalloy
8
作者 Chen Ling Shang-Ping Li +1 位作者 Jie Hou He-Li Luo 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4521-4534,共14页
The high-temperature oxidation behavior of novel Co-Cr-Nb-W carbide-strengthened wear-resistance alloys with different Al contents(1wt%,2wt%and 3wt%)at 950,1000 and 1050℃was thoroughly investigated by scanning electr... The high-temperature oxidation behavior of novel Co-Cr-Nb-W carbide-strengthened wear-resistance alloys with different Al contents(1wt%,2wt%and 3wt%)at 950,1000 and 1050℃was thoroughly investigated by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy and field emission electron probe analyzer.The porous property of NbC in-situ oxidation products(Nb_(2)O_(5),Co Nb_(2)O_(6)and Co_(4)Nb_(2)O_(9))induces a multi-layered oxide scale with micropores and cracks.Co-Cr-Nb-W alloy with 1 wt%Al undergoes catastrophic oxidation and spalling above 1000℃.The outward transportation of Cr and Co is effectively restrained by a continuous Al_(2)O_(3)scale formed around NbC in-situ oxidation region when Al content reaches 3 wt%.The β-Co Al in Co-Cr-Nb-W alloy with 3 wt%Al has an oxidation priority over eutectic carbides and the alloy matrix which are both enriched with Cr,thereby preventing the formation of Cr-depletion area and improving the self-healing ability of the oxide film.A slight change in Al content has a remarkable influence on the cooperative effect of Al and Cr and multiplies the antioxidant capacity of Co-Cr-Nb-W alloy above 1000℃. 展开更多
关键词 High-temperature oxidation behavior Oxidation kinetics SUPERalloy wear-resistant alloy Microstructure
原文传递
Preparation and wear properties of high-vanadium alloy composite layer 被引量:1
9
作者 Fangfang WANG Liujie XU +3 位作者 Shizhong WEI Xi WANG Chong CHEN Yucheng ZHOU 《Friction》 SCIE EI CAS CSCD 2022年第8期1166-1179,共14页
A high-vanadium alloy composite layer was prepared on the surface of a carbon steel using cast composite technology,and the wear properties of the composite layer were investigated.The results showed that the microstr... A high-vanadium alloy composite layer was prepared on the surface of a carbon steel using cast composite technology,and the wear properties of the composite layer were investigated.The results showed that the microstructure of the composite layer was composed of primary vanadium carbides(VC),flake martensite,residual austenite,and fine VC.The hardness of the cast alloy layer was 63 HRC.The abrasive wear resistance and impact wear resistance were increased by 60%and 26%,respectively,compared with those of high-chromium cast iron.The excellent wear resistance of the cast alloy layer is attributed to the high-hardness primary vanadium carbide and the large number of fine secondary vanadium carbides precipitated out of the cast alloy layer. 展开更多
关键词 high-vanadium alloy layer wear resistance vanadium carbide solidification process
原文传递
Heat Treatment of Centrifugally Cast High-Vanadium Alloy Steel for High-Pressure Grinding Roller 被引量:1
10
作者 Haizhi Li Weiping Tong +3 位作者 Junjun Cui Hui Zhang Liqing Chen Liang Zuo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第3期430-435,共6页
The roller is one of the main parts of a high-pressure grinding roller, which is a type of highly efficient ore crushing equipment. Its working life is strongly affected by the materials used. In this paper, a new kin... The roller is one of the main parts of a high-pressure grinding roller, which is a type of highly efficient ore crushing equipment. Its working life is strongly affected by the materials used. In this paper, a new kind of roller material, the high-vanadium alloy steel (HVAS), was investigated. The results showed that the as-cast microstructures of the HVAS roller contained martensite, residual austenite, and alloy carbides. The HVAS sample quenched at 1,080 ℃ had a high hardness, and it had much higher compressive strength and abrasive wear resistance after tempering at 560 ℃ for 30 rain. The mechanical properties of the HVAS are more sufficient than the existing roller materials, which are feasible for larger machine design. 展开更多
关键词 high-vanadium alloy steel Heat treatment High-pressure grinding roller Compressive strength Abrasive wear resistance
原文传递
Mechanical and tribological performance of CoCrNiHf_(x)eutectic medium-entropy alloys 被引量:7
11
作者 Yin Du Xuhui Pei +4 位作者 Zhaowu Tang Fan Zhang Qing Zhou Haifeng Wang Weimin Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第31期194-204,共11页
The excellent properties of the multi-principal element alloys(e.g.,the CoCrNi medium-entropy alloy)make them a perfect candidate for structure materials.Their low strength and poor wear-resistance,however,limit consi... The excellent properties of the multi-principal element alloys(e.g.,the CoCrNi medium-entropy alloy)make them a perfect candidate for structure materials.Their low strength and poor wear-resistance,however,limit considerably their applications.In this study,a lamellar eutectic microstructure was introduced by addition of Hf into CoCrNi alloy to produce a series of CoCrNiHf_(x)(x=0.1,0.2,0.3 and 0.4)eutectic medium-entropy alloys.A homogeneous eutectic microstructure with an alternate array of the soft FCC solid-solution phase and the hard Laves phase was identified for the as-cast CoCrNiHf_(0.3)alloy.After an investigation of the microstructure,mechanical and tribological properties,it was found that the hardness(plasticity)increases(decreases)with the increasing volume fraction of the Laves phase and the CoCrNiHf_(0.3)eutectic alloy exhibits both good plasticity and high strength.The wear behavior is strongly dependent on the applied normal load.For a low normal load,its tribological behavior follows the Archard's equation and a higher hardness due to Hf addition can resist plastic deformation and abrasive wear.When the normal load is high enough,the hypoeutectic or hypereutectic alloy,which possessing either high strength or good ductility but not at the same time,exhibit a poor wear resistance.In comparison,the full eutectic CoCrNiHf_(0.3)alloy with a superior combination of strength and toughness shows the best wear performance,as it can significantly reduce fracture during wear. 展开更多
关键词 Medium-entropy alloy Lamellar eutectics Hardness Plasticity wear-resistANCE
原文传递
Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off 被引量:2
12
作者 Muhammad Akmal Hyun Woo Seong Ho Jin Ryu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期176-185,共10页
In this study,single-phase NbTiZr and NbTiZr(MoTa)_(0.1) medium-entropy alloys(MEAs)were investigated for their use in biomedical implants.The alloys were prepared by arc melting,and were then cold-rolled,annealed,and... In this study,single-phase NbTiZr and NbTiZr(MoTa)_(0.1) medium-entropy alloys(MEAs)were investigated for their use in biomedical implants.The alloys were prepared by arc melting,and were then cold-rolled,annealed,and characterized in terms of phase analysis,mechanical properties,fractography,and wear resistance.Both alloys showed a single body-centered cubic phase with superior mechanical,and tribological properties compared to commercially available biomedical alloys.Mo and Ta-containing MEAs showed higher tensile yield strength(1060±18 MPa)and higher tensile ductility(~20%),thus overcoming the strength-ductility trade-off with no signs of transformation-induced plasticity,twinning,or precipitation.The generalized stacking fault energy(GSFE)calculations on the{112}<111>slip system by the first-principles calculations based on density functional theory showed that the addition of less than0.2 molar fraction of Mo and Ta lowers the GSFE curves.This behavior posits the increase in ductility of the alloy by facilitating slips although strength is also increased by solid solution strengthening.The wear resistance of both alloys against hardened steel surfaces was superior to that of commercial biomedical alloys.Thus,we concluded that NbTiZr(MoTa)_(0.1)MEA with good tensile ductility is a potential candidate for biomedical implants. 展开更多
关键词 Medium-entropy alloys wear-resistant Biomedical implants Solid solution hardening Staking fault energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部