期刊文献+
共找到45,198篇文章
< 1 2 250 >
每页显示 20 50 100
LiF and LiNO_(3) as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dualinterfaces stability 被引量:8
1
作者 Liansheng Li Yuanfu Deng +2 位作者 Huanhuan Duan Yunxian Qian Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期319-328,共10页
Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode si... Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability. 展开更多
关键词 Synergistic additives Composite solid electrolyte Dual-interfaces stability high-voltage cathode Lithium metal battery
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
2
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries high-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes 被引量:1
3
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage Electrolyte additive Solid electrolyte
下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:2
4
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
下载PDF
Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode-Free Li-Metal Batteries 被引量:1
5
作者 Baolin Wu Chunguang Chen +4 位作者 Dmitri L.Danilov Zhiqiang Chen Ming Jiang Rüdiger-A.Eichel Peter H.L.Notten 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期84-92,共9页
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc... Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries. 展开更多
关键词 anode-free lithium metal battery dual additives in situ Raman Li growth SEI formation
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
6
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
7
作者 Xiaodong Bai Chaoliang Zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte high-voltage cathode Electrochemical impedance spectroscopy Mechanism research Electrochemical characteristic
下载PDF
Degradation analysis and doping modification optimization for high-voltage P-type layered cathode in sodium-ion batteries
8
作者 Bao Zhang Yi Zhao +5 位作者 Minghuang Li Qi Wang Lei Cheng Lei Ming Xing Ou Xiaowei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期1-9,I0002,共10页
Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning the... Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides. 展开更多
关键词 Soidum ion batteries Layer cathode materials P-TYPE high-voltage performance Degradation analysis
下载PDF
Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes
9
作者 Jixue Shen Bao Zhang +4 位作者 Changwang Hao Xiao Li Zhiming Xiao Xinyou He Xing Ou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1045-1057,共13页
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic... Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances. 展开更多
关键词 Li/Ni antisite defect Dynamic characteristic high-voltage SINGLE-CRYSTAL Ni-rich Co-free cathodes Lithium-ion batteries
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
10
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide High energy/power density Fast-charging high-voltage Lithium-ion battery
下载PDF
–C≡N functionalizing polycarbonate-based solid-state polymer electrolyte compatible to high-voltage cathodes
11
作者 Shuo Ma Yanan Zhang +5 位作者 Donghui Zhang Yating Zhang Wenbin Li Kemeng Ji Zhongli Tang Mingming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期422-431,共10页
Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves t... Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves the rational design of solid-state-C≡N functionalized P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs and its synthesis by in-situ free radical polymerization of vinyl ethylene carbonate(VEC) and 2-cyanoethyl acrylate(CEA).In situ polymerization yields electrode/electrolyte interfaces with low interfacial resistance,forming a stable SEI layer enriched with LiF,Li_(3)N,and RCOOLi,ensuring stable Li plating/stripping for over 1400 h.The-C≡N moiety renders the αH on the adjacent αC positively charged,thereby endowing it with the capability to anchor TFSI^(-).Simultaneously,the incorporation of-C≡N moiety diminishes the electron-donating ability of the C=O,C-O-C,and-C≡N functional groups,facilitating not only the ion conductivity enhancement but also a more rapid Li^(+)migration proved by DFT theoretical calculations and Raman spectroscopy.At room temperature,t_(Li+) of 0.60 for P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs is achieved when the ionic conductivity σ_(Li+)is 2.63×10^(-4) S cm^(-1) and the electrochemical window is expanded to5.0 V.Both coin cells with high-areal-loading cathodes and the 6.5-mAh pouch cell,exhibit stable charge/discharge cycling.At 25℃,the 4.45-V Li|P(VEC_1-CEA_(0.3))/LiTFSI@CE|LiCoO_(2) battery performs stable cycling over 200 cycles at 0.2 C,with a capacity retention of 82.1%. 展开更多
关键词 Lithium-metal batteries high-voltage Solid-state polymer electrolytes –C≡N In situ polymerization
下载PDF
Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
12
作者 刘玲 HU Changgang +1 位作者 CHENG Wendong 刘兴泉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期142-149,共8页
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte... Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness. 展开更多
关键词 micro-arc oxidation tantalum alloy additives tribology performance
下载PDF
Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
13
作者 Zhifeng Huang Rolf Hempelmann +2 位作者 Yiqiong Zhang Li Tao Ruiyong Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期713-722,共10页
Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s... Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs. 展开更多
关键词 Aqueous redoxflow batteries Water-in-ionic liquid electrolytes high-voltage aqueous batteries Organic redox-active materials
下载PDF
Manipulating Crystal Growth and Secondary Phase PbI_(2)to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives
14
作者 Yirong Wang Yaohui Cheng +5 位作者 Chunchun Yin Jinming Zhang Jingxuan You Jizheng Wang Jinfeng Wang Jun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期432-448,共17页
In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as... In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering.The cationic cellulose derivative C-Im-CN with cyano-imidazolium(Im-CN)cation and chloride anion prominently promotes the crystallization process,grain growth,and directional orientation of perovskite.Meanwhile,excess PbI_(2)is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains.These effects result in suppressing defect formation,decreasing grain boundaries,enhancing carrier extraction,inhibiting non-radiative recombination,and dramatically prolonging carrier lifetimes.Thus,the PSCs exhibit a high power conversion efficiency of 24.71%.Moreover,C-Im-CN has multiple interaction sites and polymer skeleton,so the unencapsulated PSCs maintain above 91.3%of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions.The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs. 展开更多
关键词 PEROVSKITE Solar cells Defect passivation Biomass additives Crystal orientation
下载PDF
Engineering electrolyte additives for stable zinc-based aqueous batteries:Insights and prospects
15
作者 Tao Liu Xusheng Dong +7 位作者 Bin Tang Ruizheng Zhao Jie Xu Hongpeng Li Shasha Gao Yongzheng Fang Dongliang Chao Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期311-326,共16页
Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic re... Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic reactions of metallic Zn anodes. Therefore, achieving high-energy–density ZABs necessitates addressing the fundamental thermodynamics and kinetics of Zn anodes. Various strategies are available to mitigate these challenges, with electrolyte additive engineering emerging as one of the most efficient and promising approaches. Despite considerable research in this field, a comprehensive understanding of the intrinsic mechanisms behind the high performance of electrolyte additives remains limited. This review aims to provide a detailed introduction to functional electrolyte additives and thoroughly explore their underlying mechanisms. Additionally, it discusses potential directions and perspectives in additive engineering for ZABs, offering insights into future development and guidelines for achieving high-performance ZABs. 展开更多
关键词 Aqueous batteries Zn anodes Electrolyte additive engineering Interfacial chemistry Electrochemical mechanisms
下载PDF
Slag Characteristics of Biomass Pellet Fuels with Different Additives to Tobacco-Stalk for Tobacco Curing Heating
16
作者 Jianan Wang Yikuan Fan +1 位作者 Weidong Duan Zhaopeng Song 《Energy Engineering》 EI 2024年第11期3401-3415,共15页
Since pure tobacco stalk(TS)biomass pellet fuels tend to slag,five anti-slagging agents were added to the crushed TS to obtain a pellet fuel that could be used in biomass burners to provide heat for tobacco curing.The... Since pure tobacco stalk(TS)biomass pellet fuels tend to slag,five anti-slagging agents were added to the crushed TS to obtain a pellet fuel that could be used in biomass burners to provide heat for tobacco curing.The obtained results revealed that the main component of TS pellet fuel was K_(2)Si_(2)O_(5).During fuel combustion process,additives generated higher melting point silicate compounds by Al–K,Ca–K,and Ca–K elemental structures to replace single K elemental structure of TS,enhancing the anti-slagging efficiency of the pellet fuel from 21.63%to 78.29%and promoting the precipitation of K,Mg,and Na elements in the slag block.By investigating the anti-slagging mechanism pathways of the additives in TS biomass pellet fuels,altering of the structure of silicate ion group pathway was found to improve anti-slagging effects that met the requirements of production formula. 展开更多
关键词 Pellet fuel additives flue-cured tobacco heating potassium precipitation SILICATE
下载PDF
Harnessing eco-friendly additives to manipulate zinc-ion solvation structures towards stable zinc metal batteries
17
作者 Lingmei Wang Hao Shen +7 位作者 Wuzhu Sun Tianle Zheng Hongwei Li Jicheng Yan Lemeng Ding Zhongti Sun Jingyu Sun Chao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期114-122,共9页
Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electroly... Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electrolytes has yielded highly promising results.Nevertheless,their pervasive use has been hindered by concerns regarding their toxicity,flammability,and economic viability.Herein,we propose the utilization of γ-valerolactone(γ-V),a novel eco-friendly solvent,as an alternative for conventional organic additives to improve the performance of Zn anode.Experimental investigations and theoretical analyses have verified that γ-V additives can diminish the Zn^(2+)-desolvation energy and enhance Zn^(2+) transport kinetics.The adsorbed γ-V molecules modulate the nucleation and diffusion of Zn^(2+),facilitating Zn growth along the(002) crystal plane,thus inhibiting dendrite formation and side reactions.Consequently,the modified electrolyte with 3% γ-V exhibit highly reversible cycling for 2800 h at1 mA cm^(-2) and 1 mA h cm^(-2) in Zn//Zn symmetric cell.The Zn//KVOH coin cells deliver a capacity retention of 74.7% after 1000 cycles at 5 A g^(-1).The Zn//KVOH pouch cells maintain a capacity retention of78.7% over 90 cycles at 3 A g^(-1).Notably,the γ-V additives also effectively alleviate the self-discharge phenomenon.This work provides valuable insights on the development of aqueous zinc-ion batteries with superior safety through the modulation of electrolytes using eco-friendly additives. 展开更多
关键词 Aqueous zinc-ion batteries Eco-friendly electrolyte additive γ-Valerolactone Zn anode Renewable energy storage
下载PDF
Interactions between maternal parity and feed additives drive the composition of pig gut microbiomes in the post‑weaning period
18
作者 Kayla Law Eduardo Rosa Medina Garcia +3 位作者 Chad Hastad Deborah Murray Pedro E.Urriola Andres Gomez 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1241-1257,共17页
Background Nursery pigs undergo stressors in the post-weaning period that result in production and welfare chal-lenges.These challenges disproportionately impact the offspring of primiparous sows compared to those of ... Background Nursery pigs undergo stressors in the post-weaning period that result in production and welfare chal-lenges.These challenges disproportionately impact the offspring of primiparous sows compared to those of mul-tiparous counterparts.Little is known regarding potential interactions between parity and feed additives in the post-weaning period and their effects on nursery pig microbiomes.Therefore,the objective of this study was to investigate the effects of maternal parity on sow and offspring microbiomes and the influence of sow parity on pig fecal microbi-ome and performance in response to a prebiotic post-weaning.At weaning,piglets were allotted into three treat-ment groups:a standard nursery diet including pharmacological doses of Zn and Cu(Con),a group fed a commercial prebiotic only(Preb)based on an Aspergillus oryzae fermentation extract,and a group fed the same prebiotic plus Zn and Cu(Preb+ZnCu).Results Although there were no differences in vaginal microbiome composition between primiparous and mul-tiparous sows,fecal microbiome composition was different(R^(2)=0.02,P=0.03).The fecal microbiomes of primiparous offspring displayed significantly higher bacterial diversity compared to multiparous offspring at d 0 and d 21 post-weaning(P<0.01),with differences in community composition observed at d 21(R^(2)=0.03,P=0.04).When analyzing the effects of maternal parity within each treatment,only the Preb diet triggered significant microbiome distinc-tions between primiparous and multiparous offspring(d 21:R^(2)=0.13,P=0.01;d 42:R^(2)=0.19,P=0.001).Composi-tional differences in pig fecal microbiomes between treatments were observed only at d 21(R^(2)=0.12,P=0.001).Pigs in the Con group gained significantly more weight throughout the nursery period when compared to those in the Preb+ZnCu group.Conclusions Nursery pig gut microbiome composition was influenced by supplementation with an Aspergillus oryzae fermentation extract,with varying effects on performance when combined with pharmacological levels of Zn and Cu or for offspring of different maternal parity groups.These results indicate that the development of nursery pig gut microbiomes is shaped by maternal parity and potential interactions with the effects of dietary feed additives. 展开更多
关键词 Aspergillus prebiotic Copper Feed additives MATERNAL Nursery pig microbiome PARITY Swine microbiome Trace minerals Zinc
下载PDF
Research Progress of Additives to Improve Hydration Resistance of Magnesia-calcium Materials
19
作者 ZANG Weinan LUAN Jian +3 位作者 WANG Chunyan MIAO Zhenhua LI Jia HAN Haopeng 《China's Refractories》 CAS 2024年第1期28-33,共6页
Magnesia-calcium materials have stable hot performance,good resistance to the erosion and corrosion of liquid steel and steel slag,and a special role in purifying liquid steel,so they are widely used in iron and steel... Magnesia-calcium materials have stable hot performance,good resistance to the erosion and corrosion of liquid steel and steel slag,and a special role in purifying liquid steel,so they are widely used in iron and steel industry.However,hydration of magnesia-calcium materials seriously restricts their use,so researches have been done to improve their hydration resistance,obtaining a series of achievements.In this paper,the improvements on the hydration resistance of magnesia-calcium materials by additives in recent 20 years were presented,and their mechanisms were summarized. 展开更多
关键词 additives magnesia-calcium materials hydration resistance
下载PDF
Identification of Lubricating Oil Additives Using XGBoost and Ant Colony Optimization Algorithms
20
作者 Xia Yanqiu Cui Jinwei +2 位作者 Xie Peiyuan Zou Shaode Feng Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期158-167,共10页
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co... To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。 展开更多
关键词 lubricant oil additives fourier transform infrared spectroscopy type identification ACO-XGBoost combinatorial algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部