Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the...Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p...PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented.展开更多
Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning the...Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.展开更多
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic...Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.展开更多
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu...Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs.展开更多
Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves t...Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves the rational design of solid-state-C≡N functionalized P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs and its synthesis by in-situ free radical polymerization of vinyl ethylene carbonate(VEC) and 2-cyanoethyl acrylate(CEA).In situ polymerization yields electrode/electrolyte interfaces with low interfacial resistance,forming a stable SEI layer enriched with LiF,Li_(3)N,and RCOOLi,ensuring stable Li plating/stripping for over 1400 h.The-C≡N moiety renders the αH on the adjacent αC positively charged,thereby endowing it with the capability to anchor TFSI^(-).Simultaneously,the incorporation of-C≡N moiety diminishes the electron-donating ability of the C=O,C-O-C,and-C≡N functional groups,facilitating not only the ion conductivity enhancement but also a more rapid Li^(+)migration proved by DFT theoretical calculations and Raman spectroscopy.At room temperature,t_(Li+) of 0.60 for P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs is achieved when the ionic conductivity σ_(Li+)is 2.63×10^(-4) S cm^(-1) and the electrochemical window is expanded to5.0 V.Both coin cells with high-areal-loading cathodes and the 6.5-mAh pouch cell,exhibit stable charge/discharge cycling.At 25℃,the 4.45-V Li|P(VEC_1-CEA_(0.3))/LiTFSI@CE|LiCoO_(2) battery performs stable cycling over 200 cycles at 0.2 C,with a capacity retention of 82.1%.展开更多
Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s...Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.展开更多
While considerable research has been conducted on the structural principles,fabrication techniques,and photoelectric properties of high-voltage light-emitting diodes(LEDs),their performance in light communication rema...While considerable research has been conducted on the structural principles,fabrication techniques,and photoelectric properties of high-voltage light-emitting diodes(LEDs),their performance in light communication remains underexplored.A high-voltage seriesconnected LED or photodetector(HVS-LED/PD)based on the gallium nitride(GaN)integrated photoelectronic chip is presented in this paper.Multi-quantum wells(MQW)diodes with identical structures are integrated onto a single chip through wafer-scale micro-fabrication techniques and connected in series to construct the HVS-LED/PD.The advantages of the HVS-LED/PD in communication are explored by testing its performance as both a light transmitter and a PD.The series connection enhances the device's 3 dB bandwidth,allowing it to increase from 1.56 MHz to a minimum of 2.16 MHz when functioning as an LED,and from 47.42 kHz to at least 85.83 kHz when operating as a PD.The results demonstrate that the light communication performance of HVS-LED/PD is better than that of a single GaN MQW diode with bandwidth and transmission quantity,which enriches the research of GaN-based high-voltage devices.展开更多
The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in ...The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in glucose increases during glucose tolerance tests (GTT) and suggest potential mechanisms, including improved insulin sensitivity and reduced inflammation. Hematological analysis indicates no adverse effects of electrotherapy on healthy or diabetic mice. This study supports the potential of high-voltage low-frequency electrotherapy as an adjunctive treatment for type 2 diabetes, warranting further research into its mechanisms and long-term effects.展开更多
In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilib...In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines.展开更多
There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commerci...There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commercial 3.3/ 5V 0.5μm n-well CMOS process without adding any process steps using n-well and p-channel stops. High current and highvoltage transistors with breakdown voltages between 23 and 35V for the nMOS transistors with different laydut parameters and 19V for the pMOS transistors are achieved. This paper also presents the insulation technology and characterization results for these high-voltage devices.展开更多
High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshol...High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshold voltage and maximum driven ability are 1.02V and 7.5mA(W/L = 50), respectively. Experimental results and simulation ones are compared carefully and a way to improve the breakdown performance is proposed.展开更多
According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the...According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the wavelet packet decomposition approach and support vector machines,a new diagnosis model is proposed for such fault diagnoses in this study.The vibration eigenvalue extraction is analyzed through wavelet packet decomposition,and a four-layer support vector machine is constituted as a fault classifier.The Gaussian radial basis function is employed as the kernel function for the classifier.The penalty parameter c and kernel parameterδof the support vector machine are vital for the diagnostic accuracy,and these parameters must be carefully predetermined.Thus,a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c andδfor the support vector machine in each layer are determined by the particle swarm algorithm.The validity of this fault diagnosis model is determined with a real dataset from the operation experiment.Moreover,comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented.The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models.展开更多
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It ...The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It is crucial to construct a robust cathode-electrolyte interphase(CEI)for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions.Herein,this review presents a brief historic evolution of the mechanism of CEI formation and compositions,the state-of-art characterizations and modeling associated with CEI,and how to construct robust CEI from a practical electrolyte design perspective.The focus on electrolyte design is categorized into three parts:CEI-forming additives,anti-oxidation solvents,and lithium salts.Moreover,practical considerations for electrolyte design applications are proposed.This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes.展开更多
With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabricati...With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units are of great significance.Herein,we develop aqueous planar micro-supercapacitors(MSCs) with ultrahigh areal capacitance and energy density via an efficient all-3 D-printing strategy,which can directly extrude the active material ink and gel electrolyte onto the substrate to prepare electrochemical energy storage devices.Both the printed active carbon/exfoliated graphene(AC/EG) electrode ink and electrolyte gel are highly processable with outstanding conductivity(~97 S cm^(-1) of electrode;-34.8 mS cm^(-1) of electrolyte),thus benefiting the corresponding shaping and electrochemical performances.Furthermore,the 3 D-printed symmetric MSCs can be operated stably at a high voltage up to 2.0 V in water-in-salt gel electrolyte,displaying ultrahigh areal capacitance of2381 mF cm^(-2) and exceptional energy density of 331 μWh cm^(-2),superior to previous printed micro energy units.In addition,we can further tailor the integrated 3 D-printed MSCs in parallel and series with various voltage and current outputs,enabling metal-free interconnection.Therefore,our all-3 D-printed MSCs place a great potential in developing high-power micro-electronics fabrication and integration.展开更多
Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode si...Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability.展开更多
Fe-based sulfates are ideal cathode candidates for sodium-ion batteries(SIBs) owing to their high operating voltage and low cost but suffer from the nature of poor power performance. Herein, a hierarchical porous Na2F...Fe-based sulfates are ideal cathode candidates for sodium-ion batteries(SIBs) owing to their high operating voltage and low cost but suffer from the nature of poor power performance. Herein, a hierarchical porous Na2Fe(SO4)2@reduced graphene oxide/carbon dot(Na2Fe(SO4)2@rGO/C) with low carbon content(4.12 wt%) was synthesized via a facile homogeneous strategy benefiting for engineering application,which delivers excellent sodium storage performance(high voltage plateau of 3.75 V, 85 m Ah g-1 and330 Wh kg-1 at 0.05 C;5805 W kg-1 at 10 C) and high Na+diffusion coefficient(1.19 × 10-12 cm2 s-1).Moreover, the midpoint voltage of assembled full cell could reach 3.0 V. The electron transfer and reaction kinetics are effectively boosted since the nanoscale Na2Fe(SO4)2 is supported by a robust crosslinked carbon matrix with rGO sheets and carbon dots. The slight rGO sheets sufficiently enhance the electron transfer like a current collecter and restrain the aggregation, as well as ensure smooth ion channels. Meanwhile, the carbon dots in the whole space connect with Na2Fe(SO4)2 and help rGO to promote the conductivity of the electrode. Ex-situ X-ray powder diffraction and X-ray photoelectron spectrometry analysis confirm the high reversibility of this sodiation/desodiation process.展开更多
Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tol...Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.展开更多
High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltage...High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.展开更多
基金the financial supports from the KeyArea Research and Development Program of Guangdong Province (2020B090919001)the National Natural Science Foundation of China (22078144)the Guangdong Natural Science Foundation for Basic and Applied Basic Research (2021A1515010138 and 2023A1515010686)。
文摘Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
基金financially supported by the National Natural Science Foundation of China (Nos. 51972023, 11210304)
文摘PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented.
基金the financial support from the National Natural Science Foundation of China(52202338)。
文摘Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.
基金the National Natural Science Foundation of China(52070194,52073309,51902347,51908555)Natural Science Foundation of Hunan Province(2022JJ20069,2020JJ5741).
文摘Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.
基金supported by the National Key Research and Development Program of China(2022YFA1504100)the National Natural Science Foundation of China(22125903,51872283,and 22005298)+4 种基金Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),Chinese Academy of Sciences(CAS),DNL Cooperation Fund,CAS(DNL202016 and DNL202019)Dalian Institute of Chemical Physics(DICP I2020032)Exploratory Research Project of Yanchang Petroleum International Limited and DICP(yc-hw-2022ky-01)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002 and 2021009).
文摘Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs.
基金National Natural Science Foundation of China (22078228)。
文摘Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves the rational design of solid-state-C≡N functionalized P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs and its synthesis by in-situ free radical polymerization of vinyl ethylene carbonate(VEC) and 2-cyanoethyl acrylate(CEA).In situ polymerization yields electrode/electrolyte interfaces with low interfacial resistance,forming a stable SEI layer enriched with LiF,Li_(3)N,and RCOOLi,ensuring stable Li plating/stripping for over 1400 h.The-C≡N moiety renders the αH on the adjacent αC positively charged,thereby endowing it with the capability to anchor TFSI^(-).Simultaneously,the incorporation of-C≡N moiety diminishes the electron-donating ability of the C=O,C-O-C,and-C≡N functional groups,facilitating not only the ion conductivity enhancement but also a more rapid Li^(+)migration proved by DFT theoretical calculations and Raman spectroscopy.At room temperature,t_(Li+) of 0.60 for P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs is achieved when the ionic conductivity σ_(Li+)is 2.63×10^(-4) S cm^(-1) and the electrochemical window is expanded to5.0 V.Both coin cells with high-areal-loading cathodes and the 6.5-mAh pouch cell,exhibit stable charge/discharge cycling.At 25℃,the 4.45-V Li|P(VEC_1-CEA_(0.3))/LiTFSI@CE|LiCoO_(2) battery performs stable cycling over 200 cycles at 0.2 C,with a capacity retention of 82.1%.
基金support from China Postdoctoral Science Foundation(Grant No.2021M690960)China CSC abroad studying fellowship.R.C.thanks the KIST Europe basic research funding“new electrolytes for redox flow batteries”and the partial financial support from the CMBlu Energy AG.Y.Z.thanks to the support received from the National Natural Science Foundation of China(Grant No.22002009)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40565).
文摘Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs.
基金This work is jointly supported by the National Natural Science Foundation of China under Grant Nos.62004103,62105162,62005130,61827804,62274096,and 61904086the Natural Science Foundation of Jiangsu Province under Grant No.BK20200743+3 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province under Grant No.22KJA510003the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grant No.NY223084the“111”project under Grant No.D17018the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX230257.
文摘While considerable research has been conducted on the structural principles,fabrication techniques,and photoelectric properties of high-voltage light-emitting diodes(LEDs),their performance in light communication remains underexplored.A high-voltage seriesconnected LED or photodetector(HVS-LED/PD)based on the gallium nitride(GaN)integrated photoelectronic chip is presented in this paper.Multi-quantum wells(MQW)diodes with identical structures are integrated onto a single chip through wafer-scale micro-fabrication techniques and connected in series to construct the HVS-LED/PD.The advantages of the HVS-LED/PD in communication are explored by testing its performance as both a light transmitter and a PD.The series connection enhances the device's 3 dB bandwidth,allowing it to increase from 1.56 MHz to a minimum of 2.16 MHz when functioning as an LED,and from 47.42 kHz to at least 85.83 kHz when operating as a PD.The results demonstrate that the light communication performance of HVS-LED/PD is better than that of a single GaN MQW diode with bandwidth and transmission quantity,which enriches the research of GaN-based high-voltage devices.
文摘The study investigates the impact of high-voltage low-frequency electrotherapy on glucose levels and hematological parameters in an in vivo model of type 2 diabetes. The results demonstrate a significant reduction in glucose increases during glucose tolerance tests (GTT) and suggest potential mechanisms, including improved insulin sensitivity and reduced inflammation. Hematological analysis indicates no adverse effects of electrotherapy on healthy or diabetic mice. This study supports the potential of high-voltage low-frequency electrotherapy as an adjunctive treatment for type 2 diabetes, warranting further research into its mechanisms and long-term effects.
基金The National Natural Science Foundation of China (No.50578038)the Science and Technology Project of the State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines.
文摘There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commercial 3.3/ 5V 0.5μm n-well CMOS process without adding any process steps using n-well and p-channel stops. High current and highvoltage transistors with breakdown voltages between 23 and 35V for the nMOS transistors with different laydut parameters and 19V for the pMOS transistors are achieved. This paper also presents the insulation technology and characterization results for these high-voltage devices.
文摘High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshold voltage and maximum driven ability are 1.02V and 7.5mA(W/L = 50), respectively. Experimental results and simulation ones are compared carefully and a way to improve the breakdown performance is proposed.
基金Supported by National Natural Science Foundation of China(Grant No.51705372)National Science and Technology Project of the Power Grid of China(Grant No.5211DS16002L).
文摘According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the wavelet packet decomposition approach and support vector machines,a new diagnosis model is proposed for such fault diagnoses in this study.The vibration eigenvalue extraction is analyzed through wavelet packet decomposition,and a four-layer support vector machine is constituted as a fault classifier.The Gaussian radial basis function is employed as the kernel function for the classifier.The penalty parameter c and kernel parameterδof the support vector machine are vital for the diagnostic accuracy,and these parameters must be carefully predetermined.Thus,a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c andδfor the support vector machine in each layer are determined by the particle swarm algorithm.The validity of this fault diagnosis model is determined with a real dataset from the operation experiment.Moreover,comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented.The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models.
基金Open access funding provided by Shanghai Jiao Tong University
文摘The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It is crucial to construct a robust cathode-electrolyte interphase(CEI)for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions.Herein,this review presents a brief historic evolution of the mechanism of CEI formation and compositions,the state-of-art characterizations and modeling associated with CEI,and how to construct robust CEI from a practical electrolyte design perspective.The focus on electrolyte design is categorized into three parts:CEI-forming additives,anti-oxidation solvents,and lithium salts.Moreover,practical considerations for electrolyte design applications are proposed.This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes.
基金financially supported by the National Key R@D Program of China (2016YFB0100100, 2016YFA0200200)the National Natural Science Foundation of China (51872283,22075279, 21805273, 22005297, 22005298)+7 种基金the Liao Ning Revitalization Talents Program (XLYC1807153)the Central Government of Liaoning Province Guides The Funds for Local Science and Technology Development (2021JH6/10500112)the Dalian Innovation Support Plan for High Level Talents (2019RT09)the Dalian National Laboratory For Clean Energy (DNL),CASDNL Cooperation Fund,CAS (DNL201912, DNL201915, DNL202016, DNL202019)DICP (DICP ZZBS201708, DICP ZZBS201802, DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002)the China Postdoctoral Science Foundation (2019 M661141, 2020 M680995)。
文摘With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units are of great significance.Herein,we develop aqueous planar micro-supercapacitors(MSCs) with ultrahigh areal capacitance and energy density via an efficient all-3 D-printing strategy,which can directly extrude the active material ink and gel electrolyte onto the substrate to prepare electrochemical energy storage devices.Both the printed active carbon/exfoliated graphene(AC/EG) electrode ink and electrolyte gel are highly processable with outstanding conductivity(~97 S cm^(-1) of electrode;-34.8 mS cm^(-1) of electrolyte),thus benefiting the corresponding shaping and electrochemical performances.Furthermore,the 3 D-printed symmetric MSCs can be operated stably at a high voltage up to 2.0 V in water-in-salt gel electrolyte,displaying ultrahigh areal capacitance of2381 mF cm^(-2) and exceptional energy density of 331 μWh cm^(-2),superior to previous printed micro energy units.In addition,we can further tailor the integrated 3 D-printed MSCs in parallel and series with various voltage and current outputs,enabling metal-free interconnection.Therefore,our all-3 D-printed MSCs place a great potential in developing high-power micro-electronics fabrication and integration.
基金supported by the National Natural Science Foundation of China(Grant No.21875071)the Guangzhou Scientific and Technological Planning Project(Grant No.201704030061)the Guangdong Key R&D Program of China(Grant No.2019B090908001)。
文摘Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability.
基金the National Natural Science Foundation of China(Nos.21771164,U1804129 and 21671205)Postdoctoral Research Grant in Henan Province(001702055)+1 种基金Center of Advanced Analysis&Gene Sequencing of Zhengzhou Universitythe Zhongyuan Youth Talent support program in Henan province。
文摘Fe-based sulfates are ideal cathode candidates for sodium-ion batteries(SIBs) owing to their high operating voltage and low cost but suffer from the nature of poor power performance. Herein, a hierarchical porous Na2Fe(SO4)2@reduced graphene oxide/carbon dot(Na2Fe(SO4)2@rGO/C) with low carbon content(4.12 wt%) was synthesized via a facile homogeneous strategy benefiting for engineering application,which delivers excellent sodium storage performance(high voltage plateau of 3.75 V, 85 m Ah g-1 and330 Wh kg-1 at 0.05 C;5805 W kg-1 at 10 C) and high Na+diffusion coefficient(1.19 × 10-12 cm2 s-1).Moreover, the midpoint voltage of assembled full cell could reach 3.0 V. The electron transfer and reaction kinetics are effectively boosted since the nanoscale Na2Fe(SO4)2 is supported by a robust crosslinked carbon matrix with rGO sheets and carbon dots. The slight rGO sheets sufficiently enhance the electron transfer like a current collecter and restrain the aggregation, as well as ensure smooth ion channels. Meanwhile, the carbon dots in the whole space connect with Na2Fe(SO4)2 and help rGO to promote the conductivity of the electrode. Ex-situ X-ray powder diffraction and X-ray photoelectron spectrometry analysis confirm the high reversibility of this sodiation/desodiation process.
基金supported by the National Key Research and Development Program of China(No.2022YFB2404800)。
文摘Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.
基金supported by the foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions and Science and Technology Foundation(ykj-2016-00161)partly supported by International Research Promotion Program(IRPR)of Osaka University
文摘High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.