The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement...The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.展开更多
Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. I...Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.展开更多
The issue of concrete carbonation has gained importance in recent years due to the increase use in supplementary cementing materials (SCMs) in concrete mixtures. While there is general agreement that concrete carbonat...The issue of concrete carbonation has gained importance in recent years due to the increase use in supplementary cementing materials (SCMs) in concrete mixtures. While there is general agreement that concrete carbonation progresses at maximum at a relative humidity of about 60%, the rate may differ in the case of cements blended with SCMs, especially with high-volume fly ash replacements. In this study, the effect of high-volume fly ash concrete exposed to low ambient relative humidity (RH) conditions (57%) and accelerated carbonation (4% CO2) is investigated. Twenty-three concrete mixtures were produced varying in cementitious contents (310, 340, 370, and 400 kg/m3), water-to-cementitious materials ratio (0.45 and 0.50), and fly ash content (0%, 15%, 30%, and 50%) using a low and high-calcium fly ash. The specimens were allowed 1 and 7 days of moist curing and monitored for their carbonation rate and depth through phenolphthalein measurements up to 105 days of exposure. The accelerated carbonation test results indicated that increasing the addition of fly ash also led to increasing the depth of carbonation. Mixtures incorporating high-calcium fly ash were also observed to be more resistant against carbonation than low-calcium fly ash due to the higher calcium oxide (CaO) content. However, mixtures incorporating high-volume additions (50%) specimens were fully carbonated regardless of the type of fly ash used. It was evident that the increase in the duration of moist curing from 1 day to 7 days had a positive effect, reducing the carbonation depth for both plain and blended fly ash concrete mixes, however, this effect was minimal in high-volume fly ash mixtures. The results demonstrated that the water-to-cementitious ratio (W/CM) had a more dramatic impact on carbonation resistance than the curing age for mixtures incorporating 30% or less fly ash replacement, whereas those mixtures incorporating 50% showed minor differences regardless of curing age or W/CM. Based on the compressive strength results, carbonation depth appeared to decrease with increase in compressive strength, but this correlation was not significant.展开更多
HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that ma...HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.展开更多
The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slur...The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing.展开更多
The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by ...The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60℃ for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results-in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.展开更多
The effects of the fineness and shape of fly ash on the porosity and air permeability of cement pastes were investigated. Pulverized coal combustion (PCC) fly ash and fluidized bed coal combustion (FBC) fly ash cl...The effects of the fineness and shape of fly ash on the porosity and air permeability of cement pastes were investigated. Pulverized coal combustion (PCC) fly ash and fluidized bed coal combustion (FBC) fly ash classified into three different finenesses were used. River sand with particle size distribution similar to that of fly ash was also used for comparison. Portland cement was replaced with fly ash and ground sand at the dosages of 0, 20wt%, and 40wt%. A water-to-binder ratio (w/b) of 0.35 was used throughout the experiment. The results show that the porosity and air permeability of the pastes are influenced by the shape, fineness, and replacement level of fly ash. The porosity and air permeability of FBC fly ash pastes are higher than those of PCC fly ash pastes. This is due to the higher irregular shape and surface of FBC fly ash compared to the spherical shape and relatively smooth surface of PCC fly ash. The porosity increases with the increase in fly ash replacement level and decreases with the increase in its fineness. The permeability of PCC fly ash pastes decreases with the increase in replacement level and fineness, while for FBC fly ash, the permeability increases with the increase in replacement level. Decreases in porosity and permeability are due to a combined effect of the packing of fine particles and the reaction of fly ash.展开更多
Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data anal...Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.展开更多
The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested wit...The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested with different NS dosage from 0 to 4%. Results show that the compressive strength is dramatically improved with the increase of NS content up to 3%, and decreases with further increase of NS content (e g, at 4%). Then X?ray diffraction (XRD), differential scanning calorimetry-thermogravimetry (DSCTG), scanning electron microscope (SEM), energy disperse spectroscopy (EDS), mercury intrusion porosimeter (MIP) and nuclear magnetic resonance (NMR) were used to analyze the mechanism. The results reveal that the addition of NS accelerates the hydration of cement and fly ash, decreases the porosity and the content of calcium hydroxide (CH) and increases the polymerization degree of C-S-H thus enhancing the compressive strength of mortars. The interfacial transition zone (ITZ) of CHVFA mortars is also significantly improved by the addition ofNS, embodying in the decrease of Ca/Si ratio and CH enrichment of ITZ.展开更多
By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on...By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.展开更多
Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineer s to seek cheaper binding materials. Fly ash, which is the indus- trial wast...Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineer s to seek cheaper binding materials. Fly ash, which is the indus- trial wast e from thermal power plant, possess the potential activity of jellification, and can b e used in cemented fill as a partial substitute for cement to reduce the fill co s t. Tests were done during the past few years in Xinqiao Pyrite Mine and Phoenix Copper Mine to determine the technology parameters and the suitable content of f ly ash. Specimens with different cement/fly/ash tailings (sands) ratios were tes ted to obtain the strength values of the fill mass based on the analyses of both the chemical composition and physical and mechanical properties of fly ash . The compressive strength of specimens with a ratio of 1∶2∶8 (cement to fly ash to tailings ) can reach 2 MPa after 90 d curing, totally meeting the requiremen t of artificial pillar and reducing the fill cost by 20%-30%.展开更多
Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars ha...Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.展开更多
In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the...In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the main binder.One of the most popular pozzolanic materials that can be employed instead of cement is fly ash,which is thermal power plant tailings.But the compositions of fly ash and tailings used in high amounts in the CPB method,as well as the chemical structures that these materials form by interacting with the cement binder,affect the mechanical properties of the material depending on time.In this study,fly ash with 4 different chemical compositions(TFA,SFA,YFA,and CFA)was used as a cement substitute in CPB.By substituting fly ash with different chemical compositions in different proportions,CPB samples were created and their strength was elucidated according to 28,56,and 90-day curing times.The results of the study revealed that TFA with the highest CaO/SiO_(2) and SO_(3) ratios remained stable at the strength values of 6 MPa(total 9% binder)and 10 MPa(total 11% binder)in the long term.However,CFA with the lowest CaO/SiO_(2),SO_(3),and the highest SiO_(2)+Al_(2)O_(3)+Fe_(2)O_(3) ratios resulted in the greatest strength increase at a 20%substitution rate(11% of the total binder).Nevertheless,it was found that the SFA,which is in Class F,increased its strength in the early period based on the CaO rate.展开更多
The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the l...The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substhtaion, deposition or adsorption mechanisms.展开更多
Effects of organosilane-modified PCE (OS-PCE) on the fluidity and the hydration properties of cement-fly ash (FA) composite binder were systematically analyzed.The experimental results show that OS-PCE possesses respe...Effects of organosilane-modified PCE (OS-PCE) on the fluidity and the hydration properties of cement-fly ash (FA) composite binder were systematically analyzed.The experimental results show that OS-PCE possesses respectively 36.98% and 36.67% higher saturated adsorption amount on cement and FA,in comparison with ordinary PCE,and can contribute to higher fluidity of cement-FA composite binder.The addition of OS-PCE retards hydration process of cement-FA composite binder proportionally with the dosage of OS-PCE,but promotes the hydration kinetics of the composite binder.The reactivity enhancement is attributed to the well-dispersed FA by OS-PCE,which provides more nucleation sites for the reaction of heterogeneous C-S-H and enhances the contact with water to react with CH forming pozzolanic C-S-H.Well-distributed hydration products are exhibited in the hardened binder added with OS-PCE,with a large number of hydrated gels uniformly fill in the pores and gaps,which improves the compaction of the hardened structure.展开更多
Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then...Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then the powders were immersed in alkali solutions. Adsorption characteristics of K^+ and Na^+ ions in the pastes were investigated. Meawhile, the desorption characteristics of the adsorbed alklai ions and the inherent K^+ and Na^+ ions in the pastes were also investigated. Results showed that the contents of K^+ and Na^+ ions adsorbed by the pastes increased with increasing the substitution levels of fly ash and/or the concentrations of alkali solutions. Each paste was characterized by having the same adsorption capacity for K^+ or Na^+ that was essentially independent of alkali concentration. Adsorption mechanism of K^+ and Na^+ ions by the pastes is believed to be an effect of charge compensation of the C-S-H gel. Adsorption-desorption of the adsorbed K^+ and Na^+ ions in the pastes is reversible. The inherent K^+ and Na^+ ions in the pastes entered rapidly into the de-ionized water during the first 120 minutes, and then they were released at a relatively slow rate. A steady-state alkali partition was reached at about 720 minutes. Some K^+ and Na^+ ions which were originally "bound" by the hydration products were considered to be released into de-ionized water. Leaching tests showed that there was no significant effect of fly ash on the retaining of available alkalis in the pastes. A part of the released alkali ions exists in the pore solutions and the other part may be physically adsorbed by the hydration products.展开更多
For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cem...For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cement and fly ash content, modifying agent (MA) on the compact, unconfined compressive strength, indirect tensile strength and water stability of the CIR mixtures were investigated. The experimental results showed that the maximum dry density and the optimum moisture content of the mixture changed significantly with the RAP/S ratio and cement-fly ash content. Unconfined compressive strength, indirect tensile strength and water stability were improved significantly by the addition of MA, and the water stability was improved by nearly 20% on average. Scanning electron microscopy(SEM) images indicated that MA accelerated the hydration of cement-fly ash system. Needle-like AFt and fibrous C-S-H gel were observed in the mixtures, which resulted in the cementation effect among the CIR mixture particles and a more compact microstructure. All these could be the cause of high strength of the CIR mixtures with MA.展开更多
In order to study the mechanical properties and micro-mechanism of industrial waste fly ash-reinforced cement calcareous sand(FCS),the triaxial unconsolidated undrained(UU)test and scanning electron microscope tests(S...In order to study the mechanical properties and micro-mechanism of industrial waste fly ash-reinforced cement calcareous sand(FCS),the triaxial unconsolidated undrained(UU)test and scanning electron microscope tests(SEM)were carried out on it.The results of UU test show that the peak stress and energy dissipation of the FCS sample first increase and then decrease with the increase in fly ash content.Fly ash enhances the cement calcareous sand by increasing both the cohesion and internal friction angle,and adding 10%content of fly ash gives the largest values.The SEM test results shows that the hydration products of cement and fly ash filled the pores and cracks on the surface of the calcareous sand,which increased the compactness and structure of the FCS samples.The porosity of cement calcareous sand can be reduced from 27.6%to 12.8%by adding 10%fly ash.A brittleness evaluation index based on energy dissipation is proposed to quantitatively characterize the brittleness of FCS samples.The results show that when the content of fly ash is 5%,the brittleness of FCS samples is the lowest.This study shows that the mechanical properties of cement calcareous sand can be effectively enhanced by adding the appropriate amount of fly ash.展开更多
By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dis...By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions( viz. 5 wt% Na_2SO_4, MgSO_4, Na_2SO_^(4+)Na Cl and Na_2SO_^(4+)Na Cl+Na_2CO_3) on C-S-H microstructure in portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO_4 solution, Mg2+ promotes the decalcification of C-S-H by SO_4^(2-),increasing silicate tetrahedra polymerization and mean chain length(MCL) of C-S-H. However, the substituting degree of Al^(3+) for Si^(4+)(Al[4]/Si) in the paste does not change evidently. Effect of Na_2SO_4 solution on C-S-H is not significantly influenced by Na Cl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO_4^(2-) and CO_3^(2-) attack, as well as the activation of fly ash by SO_4^(2-) attack will increase the MCL and Al[4]/Si, which are both higher than that under Na_2SO_4 corrosion, MgSO_4 or Na_2SO_4 +Na Cl coordination corrosion.展开更多
Circulating fluidized bed combustion(CFBC) fly ash was mixed with cement or lime at a different ratio as a stabilizer to stabilize lake sludge.In order to understand the influences of stabilizers on the lake sludge ...Circulating fluidized bed combustion(CFBC) fly ash was mixed with cement or lime at a different ratio as a stabilizer to stabilize lake sludge.In order to understand the influences of stabilizers on the lake sludge properties,tests unconfined compressive strength,water stability and SEM observation were performed.The experimental results show that with the increase of the curing time,the strength of all the stabilized specimens increase,especially the samples containing cement.The strength of the specimens is decreased with the increasing of the CFBC fly ash/cement ratio,the optimum ratio between CFBC fly ash and cement is 2:3.The water stability of CFBC fly ash-cement based stabilizers is higher than those of cement and lime.Moreover,the lake sludge stabilization mechanism of CFBC fly ash-cement based stabilizers includes gelation and filling of the hydration products,i e,C-S-H gel and the AFt crystal,which act as benders to solidify those particles together and fill in the packing void of the aggregates.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52004272,52122404,52061135111,52174092,and 52074259)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20200660 and BK20220157)+1 种基金the Xuzhou Science and Technology Project,China (Nos.KC22005 and KC21033)the Open Foundation of Shandong Key Laboratory of Mining Disaster Prevention and Control,China (No.SMDPC 202104)。
文摘The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.
文摘Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.
文摘The issue of concrete carbonation has gained importance in recent years due to the increase use in supplementary cementing materials (SCMs) in concrete mixtures. While there is general agreement that concrete carbonation progresses at maximum at a relative humidity of about 60%, the rate may differ in the case of cements blended with SCMs, especially with high-volume fly ash replacements. In this study, the effect of high-volume fly ash concrete exposed to low ambient relative humidity (RH) conditions (57%) and accelerated carbonation (4% CO2) is investigated. Twenty-three concrete mixtures were produced varying in cementitious contents (310, 340, 370, and 400 kg/m3), water-to-cementitious materials ratio (0.45 and 0.50), and fly ash content (0%, 15%, 30%, and 50%) using a low and high-calcium fly ash. The specimens were allowed 1 and 7 days of moist curing and monitored for their carbonation rate and depth through phenolphthalein measurements up to 105 days of exposure. The accelerated carbonation test results indicated that increasing the addition of fly ash also led to increasing the depth of carbonation. Mixtures incorporating high-calcium fly ash were also observed to be more resistant against carbonation than low-calcium fly ash due to the higher calcium oxide (CaO) content. However, mixtures incorporating high-volume additions (50%) specimens were fully carbonated regardless of the type of fly ash used. It was evident that the increase in the duration of moist curing from 1 day to 7 days had a positive effect, reducing the carbonation depth for both plain and blended fly ash concrete mixes, however, this effect was minimal in high-volume fly ash mixtures. The results demonstrated that the water-to-cementitious ratio (W/CM) had a more dramatic impact on carbonation resistance than the curing age for mixtures incorporating 30% or less fly ash replacement, whereas those mixtures incorporating 50% showed minor differences regardless of curing age or W/CM. Based on the compressive strength results, carbonation depth appeared to decrease with increase in compressive strength, but this correlation was not significant.
文摘HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.
基金This research was partially funded by Mining Education Australia(MEA)and OZ Minerals,Australiatheir support is gratefully acknowledged.
文摘The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing.
基金supported by the Higher Education Research Promotion and National Research University Project of ThailandThailand Research Fund (TRF) under the TRF Senior Research Scholar (No.RTA5480004)the Royal Golden Jubilee Ph.D. Program (No. PHD/0340/2552)
文摘The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60℃ for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results-in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.
基金supported by the Thailand Research Fund (TRF) under TRF Senior Research Scholar Contact (No.RTA5080020)the Ministry of Education of Thailand through Commission on Higher Education under the Ministry Staff Development Project
文摘The effects of the fineness and shape of fly ash on the porosity and air permeability of cement pastes were investigated. Pulverized coal combustion (PCC) fly ash and fluidized bed coal combustion (FBC) fly ash classified into three different finenesses were used. River sand with particle size distribution similar to that of fly ash was also used for comparison. Portland cement was replaced with fly ash and ground sand at the dosages of 0, 20wt%, and 40wt%. A water-to-binder ratio (w/b) of 0.35 was used throughout the experiment. The results show that the porosity and air permeability of the pastes are influenced by the shape, fineness, and replacement level of fly ash. The porosity and air permeability of FBC fly ash pastes are higher than those of PCC fly ash pastes. This is due to the higher irregular shape and surface of FBC fly ash compared to the spherical shape and relatively smooth surface of PCC fly ash. The porosity increases with the increase in fly ash replacement level and decreases with the increase in its fineness. The permeability of PCC fly ash pastes decreases with the increase in replacement level and fineness, while for FBC fly ash, the permeability increases with the increase in replacement level. Decreases in porosity and permeability are due to a combined effect of the packing of fine particles and the reaction of fly ash.
文摘Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.
基金Funded by the “13th Five-Year” National Science and Technology Support Program of China(No.2016YFC0701003–05)the Science and Technology Support Program of Hubei Province(No.2015BAA084)the National Natural Science Foundation of China(No.51378408)
文摘The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested with different NS dosage from 0 to 4%. Results show that the compressive strength is dramatically improved with the increase of NS content up to 3%, and decreases with further increase of NS content (e g, at 4%). Then X?ray diffraction (XRD), differential scanning calorimetry-thermogravimetry (DSCTG), scanning electron microscope (SEM), energy disperse spectroscopy (EDS), mercury intrusion porosimeter (MIP) and nuclear magnetic resonance (NMR) were used to analyze the mechanism. The results reveal that the addition of NS accelerates the hydration of cement and fly ash, decreases the porosity and the content of calcium hydroxide (CH) and increases the polymerization degree of C-S-H thus enhancing the compressive strength of mortars. The interfacial transition zone (ITZ) of CHVFA mortars is also significantly improved by the addition ofNS, embodying in the decrease of Ca/Si ratio and CH enrichment of ITZ.
基金Funded by the "Hundred Talents" Project of Chinese Academy of Sciencesthe "Technology Innovation" Project of Chinese Academy of Sciences
文摘By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.
文摘Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineer s to seek cheaper binding materials. Fly ash, which is the indus- trial wast e from thermal power plant, possess the potential activity of jellification, and can b e used in cemented fill as a partial substitute for cement to reduce the fill co s t. Tests were done during the past few years in Xinqiao Pyrite Mine and Phoenix Copper Mine to determine the technology parameters and the suitable content of f ly ash. Specimens with different cement/fly/ash tailings (sands) ratios were tes ted to obtain the strength values of the fill mass based on the analyses of both the chemical composition and physical and mechanical properties of fly ash . The compressive strength of specimens with a ratio of 1∶2∶8 (cement to fly ash to tailings ) can reach 2 MPa after 90 d curing, totally meeting the requiremen t of artificial pillar and reducing the fill cost by 20%-30%.
基金financially supported by the National Natural Science Foundation of China(Nos.52074035 and 52008229)the Key Technologies Research and Develo pment Program,China(No.2020YFB0606200)。
文摘Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.
文摘In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the main binder.One of the most popular pozzolanic materials that can be employed instead of cement is fly ash,which is thermal power plant tailings.But the compositions of fly ash and tailings used in high amounts in the CPB method,as well as the chemical structures that these materials form by interacting with the cement binder,affect the mechanical properties of the material depending on time.In this study,fly ash with 4 different chemical compositions(TFA,SFA,YFA,and CFA)was used as a cement substitute in CPB.By substituting fly ash with different chemical compositions in different proportions,CPB samples were created and their strength was elucidated according to 28,56,and 90-day curing times.The results of the study revealed that TFA with the highest CaO/SiO_(2) and SO_(3) ratios remained stable at the strength values of 6 MPa(total 9% binder)and 10 MPa(total 11% binder)in the long term.However,CFA with the lowest CaO/SiO_(2),SO_(3),and the highest SiO_(2)+Al_(2)O_(3)+Fe_(2)O_(3) ratios resulted in the greatest strength increase at a 20%substitution rate(11% of the total binder).Nevertheless,it was found that the SFA,which is in Class F,increased its strength in the early period based on the CaO rate.
文摘The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substhtaion, deposition or adsorption mechanisms.
基金Funded by the Natural Science Foundation of China(51808369)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB560016)+4 种基金the Opening Project of State Key Laboratory of Green Building Materials(YA-615)the State Key Laboratory of Silicate Building Materials(SYSJJ2018-09)Hubei Key Laboratory of Water System Science for Sponge City Construction(2019-01)the Construction System Science and Technology Project of Jiangsu Province(2018ZD049)the Natural Science Foundation of Suzhou University of Science and Technology(XKQ2018009)。
文摘Effects of organosilane-modified PCE (OS-PCE) on the fluidity and the hydration properties of cement-fly ash (FA) composite binder were systematically analyzed.The experimental results show that OS-PCE possesses respectively 36.98% and 36.67% higher saturated adsorption amount on cement and FA,in comparison with ordinary PCE,and can contribute to higher fluidity of cement-FA composite binder.The addition of OS-PCE retards hydration process of cement-FA composite binder proportionally with the dosage of OS-PCE,but promotes the hydration kinetics of the composite binder.The reactivity enhancement is attributed to the well-dispersed FA by OS-PCE,which provides more nucleation sites for the reaction of heterogeneous C-S-H and enhances the contact with water to react with CH forming pozzolanic C-S-H.Well-distributed hydration products are exhibited in the hardened binder added with OS-PCE,with a large number of hydrated gels uniformly fill in the pores and gaps,which improves the compaction of the hardened structure.
基金Funded by the National Natural Science Foundation of China(No.51578004)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then the powders were immersed in alkali solutions. Adsorption characteristics of K^+ and Na^+ ions in the pastes were investigated. Meawhile, the desorption characteristics of the adsorbed alklai ions and the inherent K^+ and Na^+ ions in the pastes were also investigated. Results showed that the contents of K^+ and Na^+ ions adsorbed by the pastes increased with increasing the substitution levels of fly ash and/or the concentrations of alkali solutions. Each paste was characterized by having the same adsorption capacity for K^+ or Na^+ that was essentially independent of alkali concentration. Adsorption mechanism of K^+ and Na^+ ions by the pastes is believed to be an effect of charge compensation of the C-S-H gel. Adsorption-desorption of the adsorbed K^+ and Na^+ ions in the pastes is reversible. The inherent K^+ and Na^+ ions in the pastes entered rapidly into the de-ionized water during the first 120 minutes, and then they were released at a relatively slow rate. A steady-state alkali partition was reached at about 720 minutes. Some K^+ and Na^+ ions which were originally "bound" by the hydration products were considered to be released into de-ionized water. Leaching tests showed that there was no significant effect of fly ash on the retaining of available alkalis in the pastes. A part of the released alkali ions exists in the pore solutions and the other part may be physically adsorbed by the hydration products.
基金Funded by the High-Tech Research and Development Program (863 National Program) of China(No.2009AA11Z106)
文摘For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cement and fly ash content, modifying agent (MA) on the compact, unconfined compressive strength, indirect tensile strength and water stability of the CIR mixtures were investigated. The experimental results showed that the maximum dry density and the optimum moisture content of the mixture changed significantly with the RAP/S ratio and cement-fly ash content. Unconfined compressive strength, indirect tensile strength and water stability were improved significantly by the addition of MA, and the water stability was improved by nearly 20% on average. Scanning electron microscopy(SEM) images indicated that MA accelerated the hydration of cement-fly ash system. Needle-like AFt and fibrous C-S-H gel were observed in the mixtures, which resulted in the cementation effect among the CIR mixture particles and a more compact microstructure. All these could be the cause of high strength of the CIR mixtures with MA.
基金This research was funded by the National Natural Science Foundation of China(41772311,51968019).
文摘In order to study the mechanical properties and micro-mechanism of industrial waste fly ash-reinforced cement calcareous sand(FCS),the triaxial unconsolidated undrained(UU)test and scanning electron microscope tests(SEM)were carried out on it.The results of UU test show that the peak stress and energy dissipation of the FCS sample first increase and then decrease with the increase in fly ash content.Fly ash enhances the cement calcareous sand by increasing both the cohesion and internal friction angle,and adding 10%content of fly ash gives the largest values.The SEM test results shows that the hydration products of cement and fly ash filled the pores and cracks on the surface of the calcareous sand,which increased the compactness and structure of the FCS samples.The porosity of cement calcareous sand can be reduced from 27.6%to 12.8%by adding 10%fly ash.A brittleness evaluation index based on energy dissipation is proposed to quantitatively characterize the brittleness of FCS samples.The results show that when the content of fly ash is 5%,the brittleness of FCS samples is the lowest.This study shows that the mechanical properties of cement calcareous sand can be effectively enhanced by adding the appropriate amount of fly ash.
基金Funded by the Major State Basic Research Development Program of China(“973” Program)(No.2015CB655101)Natural Science Foundation of Hebei(No.E2016209283)+1 种基金National Natural Science Foundation of China(No.51402003)Open Foundation of Road Bridge and Structural Engineering Key Laboratory WHUT,China(No.DQZDJJ201504)
文摘By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions( viz. 5 wt% Na_2SO_4, MgSO_4, Na_2SO_^(4+)Na Cl and Na_2SO_^(4+)Na Cl+Na_2CO_3) on C-S-H microstructure in portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO_4 solution, Mg2+ promotes the decalcification of C-S-H by SO_4^(2-),increasing silicate tetrahedra polymerization and mean chain length(MCL) of C-S-H. However, the substituting degree of Al^(3+) for Si^(4+)(Al[4]/Si) in the paste does not change evidently. Effect of Na_2SO_4 solution on C-S-H is not significantly influenced by Na Cl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO_4^(2-) and CO_3^(2-) attack, as well as the activation of fly ash by SO_4^(2-) attack will increase the MCL and Al[4]/Si, which are both higher than that under Na_2SO_4 corrosion, MgSO_4 or Na_2SO_4 +Na Cl coordination corrosion.
基金Funded by the High-Tech Research and Development Program of China(863 Program)(No.2009AA11Z106)
文摘Circulating fluidized bed combustion(CFBC) fly ash was mixed with cement or lime at a different ratio as a stabilizer to stabilize lake sludge.In order to understand the influences of stabilizers on the lake sludge properties,tests unconfined compressive strength,water stability and SEM observation were performed.The experimental results show that with the increase of the curing time,the strength of all the stabilized specimens increase,especially the samples containing cement.The strength of the specimens is decreased with the increasing of the CFBC fly ash/cement ratio,the optimum ratio between CFBC fly ash and cement is 2:3.The water stability of CFBC fly ash-cement based stabilizers is higher than those of cement and lime.Moreover,the lake sludge stabilization mechanism of CFBC fly ash-cement based stabilizers includes gelation and filling of the hydration products,i e,C-S-H gel and the AFt crystal,which act as benders to solidify those particles together and fill in the packing void of the aggregates.