期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Aerodynamic effects on a railway tunnel with partially changed cross-sectional area 被引量:4
1
作者 LI Wen-hui LIU Tang-hong +3 位作者 MARTINEZ-VAZQUEZ Pedro XIA Yu-tao CHEN Zheng-wei GUO Zi-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2589-2604,共16页
The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions wa... The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions was analyzed based on the three-dimensional,unsteady,compressible,and RNG k-εturbulence model.The results highlight that the reduction rate(S)most affects pressure configurations at the middle tunnel segment,followed by the enlarged segments near access,and finally the exit.The strength of the newly generated compression wave at the tunnel junction where the cross-section abruptly changes increases exponentially with the decrease of the cross-sectional area.The maximum peak-to-peak pressureΔP on the tunnel and train surface for non-uniform tunnels is reduced by 10.7%and 13.8%,respectively,compared with those of equivalent uniform tunnels.Overall,the economic analysis suggests that the aerodynamic performance of the developed tunnel prototype surpasses those conventional tunnels based on the same excavated volume. 展开更多
关键词 high-speed train railway tunnel CROSS-SECTION transient pressure blockage ratio
下载PDF
In Situ Experiments on Supporting Load Effect of Large-span Deep Tunnels in Hard Rock 被引量:4
2
作者 HE Ben-guo ZHU Yong-quan +2 位作者 SUN Ming-lei LIU Hong-yan ZHANG Zhi-qiang 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1125-1136,共12页
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for... A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code. 展开更多
关键词 Large-span tunnel railway tunnel Surrounding rock pressure Load distribution In situ experiment
下载PDF
Comparative analysis between single-train passing and double-train intersection in a tunnel
3
作者 Jianming DU Qian FANG +1 位作者 Xuan ZHANG Hualao WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第5期429-442,共14页
Aerodynamic pressure significantly impacts the scientific evaluation of tunnel service performance.The aerodynamic pressure of two trains running in a double-track tunnel is considerably more complicated than that of ... Aerodynamic pressure significantly impacts the scientific evaluation of tunnel service performance.The aerodynamic pressure of two trains running in a double-track tunnel is considerably more complicated than that of a single train.We used the numerical method to investigate the difference in aerodynamic pressure between a single train and two trains running in a double-track tunnel.First,the numerical method was verified by comparing the results of numerical simulation and on-site monitoring.Then,the characteristics of aerodynamic pressure were studied.Finally,the influence of various train-tunnel factors on the characteristics of aerodynamic pressure was investigated.The results show that the aerodynamic pressure variation can be divided into stage I:irregular pressure fluctuations before the train tail leaves the tunnel exit,and stage II:periodic pressure declines after the train tail leaves the tunnel exit.In addition,the aerodynamic pressure simultaneously jumps positively or drops negatively for a single train or two trains running in double-track tunnel scenarios.The pressure amplitude in the two-train case is higher than that for a single train.The maximum positive peak pressure difference(P_(STP))and maximum negative peak pressure difference(P_(STN))increase as train speed rises to the power from 2.256 to 2.930 in stage I.The P_(STP) and P_(STN) first increase and then decrease with the increase of tunnel length in stage I.The P_(STP) and P_(STN) increase as the blockage ratio rises to the power from 2.032 to 2.798 in stages I and II. 展开更多
关键词 railway tunnel Aerodynamic effect pressure characteristic Train speed tunnel length Blockage ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部