期刊文献+
共找到2,106篇文章
< 1 2 106 >
每页显示 20 50 100
Effects of Slow-release Nitrogen Fertilizer on Yield and Nitrogen Accumulation of Summer Maize in Shajiang Black Soil Area
1
作者 Yongfeng XING Changmin WEI +7 位作者 Guoli CHEN Weimeng XU Wanyou SONG Guizhi LI Wenwei ZHOU Yanwei WAN Enzhong ZHOU Weifang LI 《Agricultural Biotechnology》 2024年第2期72-74,共3页
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap... [Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area. 展开更多
关键词 Slow-release nitrogen fertilizer Shajiang black soil summer maize Nitrogen metabolism YIELD
下载PDF
Effects of Slow-release Nitrogen on Dry Matter Accumulation,Translocation and Yield of Summer Maize
2
作者 Yongfeng XING Guoli CHEN +6 位作者 Changmin WEI Weimeng XU Wanyou SONG Guizhi LI Yanwei WAN Enzhong ZHOU Weifang LI 《Agricultural Biotechnology》 2024年第3期11-13,共3页
[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen... [Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region. 展开更多
关键词 Slow-release nitrogen fertilizer summer maize Dry matter accumulation TRANSLOCATION
下载PDF
Combined effects of high temperature and waterlogging on yield and stem development of summer maize 被引量:2
3
作者 Jingyi Shao Peng Liu +3 位作者 Bin Zhao Jiwang Zhang Xiangyu Zhao Baizhao Ren 《The Crop Journal》 SCIE CSCD 2023年第2期651-660,共10页
The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in respo... The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone. 展开更多
关键词 summer maize LIGNIN Stem microstructure Dry matter accumulation and distribution YIELD
下载PDF
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
4
作者 XU Meng-ze WANG Yu-hong +6 位作者 NIE Cai-e SONG Gui-pei XIN Su-ning LU Yan-li BAI You-lu ZHANG Yin-jie WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3769-3782,共14页
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no... Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy. 展开更多
关键词 yield of winter wheat and summer maize phosphorus balance phosphorus use efficiency OLSEN-P critical phosphorus application rate
下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:14
5
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ... In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 winter wheat summer maize soil salinity saline water irrigation salt balance
下载PDF
Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China 被引量:12
6
作者 YANG Jian-ying MEI Xu-rong +4 位作者 HUO Zhi-guo YAN Chang-rong JU Hui ZHAO Feng-hua LIU Qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期2065-2076,共12页
Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information... Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain. 展开更多
关键词 ETA winter wheat summer maize SEBAL crop information Huang-Huai-Hai Plain
下载PDF
Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize 被引量:12
7
作者 SHI De-yang LI Yan-hong +3 位作者 ZHANG Ji-wang LIU Peng ZHAO Bin DONG Shu-ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第11期2515-2528,共14页
Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maiz... Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency. 展开更多
关键词 summer maize increased plant density reduced N rate N use efficiency resource use efficiency
下载PDF
Modified fertilization management of summer maize(Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use 被引量:9
8
作者 CHENG Yi ZHAO Jie +5 位作者 LIU Zhen-xiang HUO Zhi-jin LIU Peng DONG Shu-ting ZHANG Ji-wang ZHAO Bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1644-1657,共14页
Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are ... Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are efficient methods for increasing crop yield.Field experiments were designed to investigate the influence of modified fertilization management and planting density on grain yield and nitrogen use efficiency of the popular maize variety Zhengdan 958, in four treatments including local farmer's practice(FP), high-yielding and high efficiency cultivation(HH), super high-yielding cultivation(SH), and the control(CK).Trials were conducted in three locations of the Huang-Huai-Hai Plain in northern China.Compared with FP, SH was clearly able to promote N absorption and dry matter accumulation in post-anthesis, and achieve high yield and N use efficiency by increasing planting density and postponing the supplementary application of fertilizers.However, with an increase in planting density, the demand of N increased along with grain yield.Due to the input of too much N fertilizer, the efficiency of N use in SH was low.Applying less total N, ameliorating cultivation and cropping management practices should be considered as priority strategies to augment production potential and finally achieve synchronization between high yield and high N efficiency in fertile soils.However, in situations where soil fertility is low, achieving high yield and high N use efficiency in maize will likely depend on increased planting density and appropriate application of supplementary fertilizers postpone to the grain-filling stage. 展开更多
关键词 modified fertilization management summer maize YIELD nitrogen use efficiency
下载PDF
Evaluation of Pathway of Nitrogen Loss in Winter Wheat and Summer Maize Rotation System 被引量:9
9
作者 JU Xiao-tang, LIU Xue-jun, ZOU Guo-yuan, WANG Zhao-hui and ZHANG Fu-suo(Department of Plant Nutrition , China Agricultural University , Beijing 100094 ,P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第11期1224-1231,共8页
The nitrogen loss pathway in winter wheat and summer maize rotation system was studied based on field experimental data. The results showed that nitrogen recovery rate was significantly decreased with nitrogen fertili... The nitrogen loss pathway in winter wheat and summer maize rotation system was studied based on field experimental data. The results showed that nitrogen recovery rate was significantly decreased with nitrogen fertilization rate increased, while residual rate and losses rate had an increasing trend. Accumulated ammonia volatilization loss in winter wheat and summer maize rotation was 12. 8(N0), 22.0(N120), 33. 0(N240) and 64. 5 kg N ha-1 (N360) respectively and rate of ammonia volatilization loss was 3.8, 4.2 and 7.2% respectively while urea was mixed with 0 -10 cm soil or spread before irrigation. Denitrification loss with acetylene-soil core incubation method in winter wheat was lower than 1 kg N ha-1 and rate of denitrification loss was 0. 21 - 0. 26% or trace. Denitrification loss in summer maize was 1 - 14 kg N ha-1 and rate of denitrification loss was 1-5%. The total gaseous loss in winter wheat and summer maize rotation system was less than 10%, and the main nitrogen fertilizer loss way was leaching below 0 - 100 cm soil profile and accumulated in deeper soil. 展开更多
关键词 Winter wheat summer maize Ammonia volatilization Denitrif ication Nitrate leaching
下载PDF
Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize(Zea mays L.)waterlogged in the field 被引量:11
10
作者 REN Bai-zhao HU Juan +3 位作者 ZHANG Ji-wang DONG Shu-ting LIU Peng ZHAO Bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第6期1586-1595,共10页
Waterlogging is one of the major abiotic stresses in agricultural crop production.However,the application of 2-chloro-6-(trichloromethyl)pyridine(nitrapyrin)can effectually mitigate the losses of nitrogen efficiency a... Waterlogging is one of the major abiotic stresses in agricultural crop production.However,the application of 2-chloro-6-(trichloromethyl)pyridine(nitrapyrin)can effectually mitigate the losses of nitrogen efficiency and grain yield of summer maize induced by waterlogging.In order to explore its role to alleviate waterlogging stress on leaf antioxidative system and photosynthetic characteristics of summer maize,a field experiment was executed to research effects of nitrapyrin application on leaf photosynthetic and senescent characteristics of waterlogged summer maize Denghai 605(DH605)and Zhengdan 958(ZD958).Experimental treatments consisted of waterlogging treatment that was applying only urea(WL),waterlogging treatment that was applying urea mixing with nitrapyrin(WL-N),and no waterlogging treatment that was only applying urea(NWL).Results showed that WL significantly decreased leaf area index(LAI),SPAD,photosynthetic rate(Pn),and protective enzyme activities,accelerated leaf aging,eventually led to a remarkable yield reduction by 38 and 42%for DH605 and ZD958,respectively,compared to NWL.However,the application of nitrapyrin was useful for relieving waterlogging damages on leaf photosynthetic ability.LAI,SPAD and Pn of WL-N for DH605 were 10,19 and 12-24%higher,and for ZD958 were 12,23 and 7-25%higher,compared to those of WL,respectively.Moreover,application of nitrapyrin effectually relieved waterlogging losses on antioxidative enzyme activities.Leaf superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activities of WL-N were averagely increased by 24,15 and 30%,respectively,while malondialdehyde(MDA)content was averagely decreased by 13%,compared to those of WL.Visibly,nitrapyrin application could improve leaf photosynthetic characteristics and retard leaf aging induced by waterlogging,thereby leading to a yield increase of waterlogged maize. 展开更多
关键词 NITRAPYRIN application WATERLOGGING summer maize PHOTOSYNTHETIC ANTIOXIDATIVE system
下载PDF
Effects of mulches on water use in a winter wheat/summer maize rotation system in Loess Plateau, China 被引量:3
11
作者 YIN Minhua LI Yuannong +1 位作者 XU Yuanbo ZHOU Changming 《Journal of Arid Land》 SCIE CSCD 2018年第2期277-291,共15页
Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwat... Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas. 展开更多
关键词 MULCH soil moisture crop water consumption water productivity winter wheat/summer maize rotation
下载PDF
The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize 被引量:4
12
作者 SHAO Rui-xin YU Kang-ke +5 位作者 LI Hong-wei JIA Shuang-jie YANG Qing-hua ZHAO Xia ZHAO Ya-li LIU Tian-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1783-1795,共13页
Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer m... Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer maize during its reproductive growth stage in the North China Plain,which is likely to cause irreversible crop damage.This study investigated the effects of elevating temperature(ET)treatment on the yield component of summer maize,beginning at the 9th unfolding leaf stage and ending at the tasseling stage.Results demonstrated that continuous ET led to a decrease in the elongation rate and activity of silks and an elongated interval between anthesis and silking stages,and eventually decreased grain number at ear tip and reduced yield.Although continuous ET before tasseling damaged the anther structure,reduced pollen activity,delayed the start of the pollen shedding stage,and shortened the pollen shedding time,it was inferred,based on phenotypical and physiological traits,that continuous ET after the 9th unfolding leaf stage influenced ears and therefore may have more significant impacts.Overall,when maize plants were exposed to ET treatment in the ear reproductive development stage,the growth of ears and tassels was blocked,which increased the occurrence of barren ear tips and led to large yield losses. 展开更多
关键词 summer maize North China Plain elevating temperatures reproductive stage barren ear tip YIELD
下载PDF
Fate of ^(15)N-Labeled Urea Under a Winter Wheat-Summer Maize Rotation on the North China Plain 被引量:44
13
作者 JU Xiao-Tang LIU Xue-Jun +1 位作者 PAN Jia-Rong ZHANG Fu-Suo 《Pedosphere》 SCIE CAS CSCD 2007年第1期52-61,共10页
一个地实验被进行在冬小麦(Triticum aestivum L.) 和夏天玉米(Zea mays L.) 下面调查 15N 标签脲和它的剩余效果的命运诺思中国平原上的旋转系统。比作 360 kg N 的常规申请率哈 ? 1 (N360 ) , 120 kg N 的减少的率哈 ?(N120 ) 1 导... 一个地实验被进行在冬小麦(Triticum aestivum L.) 和夏天玉米(Zea mays L.) 下面调查 15N 标签脲和它的剩余效果的命运诺思中国平原上的旋转系统。比作 360 kg N 的常规申请率哈 ? 1 (N360 ) , 120 kg N 的减少的率哈 ?(N120 ) 1 导致了重要增加(P 【 0.05 ) 在小麦,产量和没有重要差别被作出对有利的裁决玉米。在在收获的 0 100 厘米土剖面,与 N360 相比, N120 不管多么导致了重要减少(P 【 0.05 ) 百分比剩余 N 和百分比未予说明的 N,它可能从管理系统反映了损失。在土剖面的剩余化肥 N 25.6%44.7%和20.7%分别地,,38.2%为 N120 和 N360 在器官的 N 水池0.3%3.0%和11.2%相应地,24.4%在硝酸盐水池,显示一个更高的潜力因为沥滤的损失以常规率与申请联系了。在由接替庄稼的土剖面的剩余 N 的恢复是不到 7.5% 应用 N。为 N120,全部的土壤 N 平衡是否定的;然而,仍然有可观的矿物质 N (NH+4-N 并且没有 ? 3-N ) 在在收获以后的土剖面。因此, N120 能在短期内被认为农学的联盟者可接受,要不是长期的可持续性, N 率应该基于土壤矿物 N 测试和植物组织硝酸盐测试被推荐维持土壤肥力。 展开更多
关键词 尿素 冬小麦 玉米 中国 平原
下载PDF
Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging 被引量:1
14
作者 Juan Hu Baizhao Ren +3 位作者 Shuting Dong Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CSCD 2022年第2期478-489,共12页
Stable yield of staple grains must be ensured to satisfy food demands for daily dietary energy requirements against the backdrop of global climate change. Summer maize, a staple crop, suffers severe yield losses due t... Stable yield of staple grains must be ensured to satisfy food demands for daily dietary energy requirements against the backdrop of global climate change. Summer maize, a staple crop, suffers severe yield losses due to extreme rainfall events, threatening food security. A randomized block experiment with four treatments: control, no water stress(CK);waterlogging for 6 days at the third leaf, sixth leaf stage,and 10 th day after tasseling, was conducted to investigate the mechanism of waterlogging-induced yield losses of summer maize. Waterlogging delayed plant growth and impaired tassel and ear differentiation,leading to high grain yield losses of Denghai 605(DH605). Waterlogging at third leaf(V3) stage reduced the photosynthesis of DH605, reducing total dry matter weight. Waterlogging at V3 stage reduced sucrose-cleaving enzymes activities in spike nodes and ears, reducing the carbon partitioned to ears(–53.1%), shanks(–46.5%), and ear nodes(–71.5%) but increasing the carbon partitioned to ear leaves(9.6%) and tassels(43.9%) in comparison with CK. The reductions in total carbon assimilate together with the reduced carbon partitioning to ears resulted in poor development of spikes(with respectively 15.2%and 20.6% reductions in total florets and fertilized florets) and lengthened the anthesis–silking interval by around 1 day, leading to high yield losses. 展开更多
关键词 summer maize WATERLOGGING Tassel and ear differentiation Yield Anthesis–silking interval
下载PDF
Integrated agronomic practices management improved grain formation and regulated endogenous hormone balance in summer maize (Zea mays L.) 被引量:1
15
作者 YU Ning-ning ZHANG Ji-wang +2 位作者 LIU Peng ZHAO Bin REN Bai-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第7期1768-1776,共9页
Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones ... Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones was limited. In order to clarify this issue, two field experiments, integrated agronomic practices management(IAPM), T1(local conventional cultivation practices), T2(an optimized combination of cropping systems and fertilizer treatment), T3(treatment based on high-yield studies), and T4(further optimized combination of cropping systems and fertilizer treatment), and nitrogen rate testing(NAT)(four nitrogen rates, 0, 129.0, 184.5, and 300.0 kg N ha–1) were performed with summer maize hybrid Zhengdan 958(ZD958). Results showed that with increased nitrogen rate, the endogenous hormone balance was promoted and the grain-filling characteristics were improved sufficiently to resulting in a significant increase in grain yield. However, the grain-filling characteristics deteriorated and yield was reduced with excessive nitrogen fertilization. However, IAPM could promote hormone balance and improve grain filling characteristic. The indole-3-acetic acid(IAA), zeatin riboside(ZR), and gibberellin(GA3) contents under T2 and T4 treatments were higher and the abscisic acid(ABA) content was lower, and the ZR and GA3 contents under T3 were higher than those under T1. Those resulted in the maximum grain-filling rate(Wmax) and the active grain-filling period(P) under T2, T3 and T4 were significantly increased than those under T1, and hence promoted kernel weight and grain yield. So IAPM promoted hormone balance by improving tillage model, optimizing fertilizer rate and fertilization period, appropriately increasing planting density and delaying harvest, which promoted grain filling rate and lengthened active grain-filling period, finally increased grain yield. 展开更多
关键词 grain fling endogenous hormone integrated agronomic practices management summer maize
下载PDF
Effects of different ridge-furrow mulching systems on yield and water use efficiency of summer maize in the Loess Plateau of China 被引量:1
16
作者 CHEN Pengpeng GU Xiaobo +5 位作者 LI Yuannong QIAO Linran LI Yupeng FANG Heng YIN Minhua ZHOU Changming 《Journal of Arid Land》 SCIE CSCD 2021年第9期947-961,共15页
Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in th... Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China. 展开更多
关键词 ridge-furrow mulching summer maize soil water storage soil temperature root mass root length
下载PDF
Effects of Application of Nitrogen, Potassium and Glycinebetaine on Alleviation of Water Stress to Summer Maize
17
作者 ZHANG Li-xin LI Sheng-xiu 《Agricultural Sciences in China》 CAS CSCD 2005年第10期767-773,共7页
A pot experiment was conducted under water deficit and adequate water-supplied conditions with two maize genetypic varieties (Shaandan 9 and Shaandan 911) to study the effects of nitrogen, potassium and glycinebetai... A pot experiment was conducted under water deficit and adequate water-supplied conditions with two maize genetypic varieties (Shaandan 9 and Shaandan 911) to study the effects of nitrogen, potassium and glycinebetaine (GlyBet) on the dry matter and grain yields as well as water use efficiency (WUE). Determinations were made at different stages of the two varieties for revealing the function of these factors in increasing plant resistance to drought. Results showed that under a water-stressed condition, dry matter and grain yield were significantly reduced. However, the response of the two varieties to water stress was different: Shaandan 9 was significantly higher in dry matter and grain yields, and therefore could be regarded as a drought-resistant variety compared to Shaandan 911.Application of nitrogen, potassium and glycinebetaine raised dry matter and grain yield to different levels, and thereby alleviated the water stress and increased water use efficiency. These effects were higher for Shaandan 911 than for Shaandan 9. Under water-stressed conditions application of N fertilizer, either at low rate or at high rate, significantly increased dry matter, grain yield and water use efficiency. A significant different effect was found for Shaandan 911 between N rates, but not so for Shaandan 9. However, with supplemental water supply, effects of N fertilization were obviously decreased, showing that in addition to supplying nutrient, N fertilizer has a function in increasing drought-resistance of the crop. Potassium and glycinebetaine exhibited a remarkable function in increasing dry matter and grain yields as well as water use efficiency under water stress while such effects were obviously declined, even vanished, with supplemental water supply, indicating the important contribution of these factors in rise of drought-resistance ability of a crop. 展开更多
关键词 NITROGEN POTASSIUM Glycinebetaine (GlyBet) summer maize Water stress
下载PDF
Impacts of Different Stages of Nitrogen Dressing on Feeding Value of Forage Summer Maize
18
作者 ZHANG Ji-wang, WANG Kong-jun, HU Chang-hao, DONG Shu-ting and LIU Peng(Agronomy College, Shandong Agriculture University, Taian 271018 , P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2002年第9期972-976,共5页
A trial of investigating impacts of nitrogen dressing at different stage on feeding value and physiological characteristics of forage summer maize (Ludan50) has been conducted by means of potted planting. The results ... A trial of investigating impacts of nitrogen dressing at different stage on feeding value and physiological characteristics of forage summer maize (Ludan50) has been conducted by means of potted planting. The results suggested that biomass yield, grains yield and feeding value of all treatments were significantly raised compared CK without nitrogen dressing. Nitrogen dressing at the jointing stage for one time could raise the dry matter yield in terms of biomass, thus improving feeding value. Separating total dose of dressing nitro- 展开更多
关键词 summer maize Stage of nitrogen dressing Feeding value Physiological characteristics
下载PDF
Drought and Waterlogging Characteristics during the Growth Period of Summer Maize in Luxi Plain Areas
19
作者 Peiliang SUN Xu LIU +1 位作者 Caibo FENG Yaping LI 《Asian Agricultural Research》 2014年第2期60-63,共4页
In summer maize growth period,the water supply and demand ratio is regarded as the evaluation index of drought and waterlogging for the summer maize in Liaocheng City. Using GIS,statistics,agrometeorology and other me... In summer maize growth period,the water supply and demand ratio is regarded as the evaluation index of drought and waterlogging for the summer maize in Liaocheng City. Using GIS,statistics,agrometeorology and other methods,we analyze the precipitation during the summer maize growth period in Luxi Plains from 1961 to 2011. Through the calculation of drought and waterlogging index,it indicates that the disasters of drought and waterlogging frequently occur during the summer maize growth period,mainly affected by the drought; the frequency of occurrence of drought accounts for 80. 4%,that is,it is very prone to serious drought phenomenon,seriously affecting the normal growth and development of summer maize during the seedling period. With global warming,the industrial and domestic water demand is increasing year by year,so it is extremely difficult to increase the water diversion to solve the problem of water shortage for the growth of summer maize. Finally we put forth the following recommendations:( i) Selecting drought-resistant varieties,and improving the water resource use efficiency;( ii)Promoting the water and fertilizer coupling,sprinkler irrigation,drip irrigation,micro-irrigation and other water-saving irrigation technologies,and improving the water use efficiency;( iii) Promoting the ditch,ridge and laminating cultivation technology,reducing the field evapotranspiration,keeping warming and conserving moisture,and saving water resources;( iv) Strengthening the construction of water conservancy facilities,so that it can be irrigated during drought and drained during waterlogging;( v) During dry season,timely organizing artificial rainfall operation,and increasing precipitation in arid areas to ease drought;( vi) Rationally exploiting the groundwater,and improving the underground water use efficiency. 展开更多
关键词 summer maize DROUGHT and waterlogged Characteristi
下载PDF
Effects of Straw Returning and Chemical Control on Occurrence Quantity of Athetis lepigone Moschler in Summer Maize Fields
20
作者 Lili LI Nan ZHAO +7 位作者 Jie SHI Ansheng ZHANG Xingyuan MEN Xianhong ZHOU Qianying ZHUANG Sicong ZHANG Zhenying WANG Yi YU 《Plant Diseases and Pests》 CAS 2012年第3期30-31,共2页
Athetis lepigone Moschler is a new kind of insect pest occurring in summer corn production areas. By investigation, it was found especially serious in straw returning fields. In this paper, its damage status was inves... Athetis lepigone Moschler is a new kind of insect pest occurring in summer corn production areas. By investigation, it was found especially serious in straw returning fields. In this paper, its damage status was investigated in straw returning and chemical controlled fields, respectively. The results showed that the rate of damaged plants was 82% and the maximum pest number per 100 plants was 88 heads in the straw returning fields without chemical control. The application of herbicides and pesticides had no significant effects on occurrence quantity and damage rate, but the pest number per 100 plants decreased a little compared to the fields without chemical control. In the surer er maize fields without straw returning, the application of herbicides and pesticides could significantly decrease the damage of Athetis lepigone, the rate of damaged plants was 20%, and the pest number per 100 plants was 6. 展开更多
关键词 summer maize Straw returning Athet/s lepigone Moschler Chemical control
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部