Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions...There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.展开更多
According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of va...According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of variations are researched, the functionals depend on single argument, arbitrary unknown functions and their derivatives of higher orders. A new view point is posed and demonstrated, i.e. when the first variation of the functional is equal to zero, all the variational terms are not independent to each other, and at least one of them is equal to zero. Some theorems and corollaries of the variational problems of the functionals are obtained.展开更多
In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit...In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
Based on Tai’ s high - order bidirectional associative memory ( HOBAM) and Stmposon’ s intraconnected BAM (IBAM) , two Improved models are first presented and discussed in this paper. The improved models not only re...Based on Tai’ s high - order bidirectional associative memory ( HOBAM) and Stmposon’ s intraconnected BAM (IBAM) , two Improved models are first presented and discussed in this paper. The improved models not only retain the advantages of both HOBAM and ISAM but overcome the shortcomings of Kosko’ s BAM also. Secondly their recall stabilities in synchronous and asyn-chronous update modes have been proven by defining corresponding energy functions which decrease as the re-call process proceeds such that the systems can ensure all the training pattern pairs to become local minima of the energy surfaces. Finally with signal - to - noise ratio (SNR) approach, we show that their storage capacities and error correction capabilities are better than that of the HOBAM.展开更多
文摘Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
基金Supported by the National Natural Science Foundation of China(11361001)Natural Science Foundation of Ningxia(NZ14101)
文摘There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.
文摘According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of variations are researched, the functionals depend on single argument, arbitrary unknown functions and their derivatives of higher orders. A new view point is posed and demonstrated, i.e. when the first variation of the functional is equal to zero, all the variational terms are not independent to each other, and at least one of them is equal to zero. Some theorems and corollaries of the variational problems of the functionals are obtained.
基金supported by the NSFC(11871257,12071130)supported by the NSFC(11971165)。
文摘In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
文摘Based on Tai’ s high - order bidirectional associative memory ( HOBAM) and Stmposon’ s intraconnected BAM (IBAM) , two Improved models are first presented and discussed in this paper. The improved models not only retain the advantages of both HOBAM and ISAM but overcome the shortcomings of Kosko’ s BAM also. Secondly their recall stabilities in synchronous and asyn-chronous update modes have been proven by defining corresponding energy functions which decrease as the re-call process proceeds such that the systems can ensure all the training pattern pairs to become local minima of the energy surfaces. Finally with signal - to - noise ratio (SNR) approach, we show that their storage capacities and error correction capabilities are better than that of the HOBAM.