Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
Higher order Boussinesq-type equations for wave propagation over variable bathymetry were derived. The time dependent free surface boundary conditions were used to compute the change of the free surface in time domain...Higher order Boussinesq-type equations for wave propagation over variable bathymetry were derived. The time dependent free surface boundary conditions were used to compute the change of the free surface in time domain. The free surface velocities and the bottom velocities were connected by the exact solution of the Laplace equation. Taking the velocities on half relative water depth as the fundamental unknowns, terms relating to the gradient of the water depth were retained in the inverse series expansion of the exact solution, with which the problem was closed. With enhancements of the finite order Taylor expansion for the velocity field, the application range of the present model was extended to the slope bottom which is not so mild. For linear properties, some validation computations of linear shoaling and Booij' s tests were carried out. The problems of wave-current interactions were also studied numerically to test the performance of the enhanced Boussinesq equations associated with the effect of currents. All these computational results confirm perfectly to the theoretical solution as well as other numerical solutions of the full potential problem available.展开更多
In this work, we established a converse duality theorem for higher-order Mond-Weir type multiob- jective programming involving cones. This fills some gap in recently work of Kim et al. [Kim D S, Kang H S, Lee Y J, et ...In this work, we established a converse duality theorem for higher-order Mond-Weir type multiob- jective programming involving cones. This fills some gap in recently work of Kim et al. [Kim D S, Kang H S, Lee Y J, et al. Higher order duality in inultiobjective programming with cone constraints. Optimization, 2010, 59: 29-43].展开更多
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
基金Project supported by the National Natural Science Foundation of China (No. 10172058)the Special Fund for PhD Program of Education Ministry of China (No.2000024817)
文摘Higher order Boussinesq-type equations for wave propagation over variable bathymetry were derived. The time dependent free surface boundary conditions were used to compute the change of the free surface in time domain. The free surface velocities and the bottom velocities were connected by the exact solution of the Laplace equation. Taking the velocities on half relative water depth as the fundamental unknowns, terms relating to the gradient of the water depth were retained in the inverse series expansion of the exact solution, with which the problem was closed. With enhancements of the finite order Taylor expansion for the velocity field, the application range of the present model was extended to the slope bottom which is not so mild. For linear properties, some validation computations of linear shoaling and Booij' s tests were carried out. The problems of wave-current interactions were also studied numerically to test the performance of the enhanced Boussinesq equations associated with the effect of currents. All these computational results confirm perfectly to the theoretical solution as well as other numerical solutions of the full potential problem available.
基金supported by National Natural Science Foundation of China(Grant Nos.10831009 and 11271391)the Natural Science Foundation of Chongqing(Grant No.CSTC2011BA0030)
文摘In this work, we established a converse duality theorem for higher-order Mond-Weir type multiob- jective programming involving cones. This fills some gap in recently work of Kim et al. [Kim D S, Kang H S, Lee Y J, et al. Higher order duality in inultiobjective programming with cone constraints. Optimization, 2010, 59: 29-43].