多视图聚类已经被广泛研究,它能够采用可用的多源信息来实现更好的聚类性能.然而,大多数之前的工作仍存在两个不足:(1)它们通常关注多视图属性特征的场景,很少留意到多视图属性图数据;(2)它们主要尝试发现一致的结构或多个视图之间的关...多视图聚类已经被广泛研究,它能够采用可用的多源信息来实现更好的聚类性能.然而,大多数之前的工作仍存在两个不足:(1)它们通常关注多视图属性特征的场景,很少留意到多视图属性图数据;(2)它们主要尝试发现一致的结构或多个视图之间的关系,而忽略了多视图观测之间潜在的高阶相关性。为了解决这些问题,我们从广义角度出发,提出了一种新颖的方法,称为混合阶相似性的多视图聚类(Multiview Clustering by Hybridorder Affinity,MCHA).它将结构图和多视图属性特征巧妙融合,同时考虑了低秩概率相似性图和混合阶的相关性.具体而言,我们通过图过滤策略构建了一组保留几何结构的视图特定的平滑表示.同时,我们将从平滑表示中学习得到的多视图概率相似性图堆叠成一个张量,并对该张量给予低秩属性的约束.这可以很好地恢复视图间更高阶的相关性.在八个基准数据集上的实验表明,我们所提出的MCHA方法具有最先进的有效性.展开更多
基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利...基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。展开更多
针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via ...针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via rotational invariance technique,trpESPRIT)方法。首先对阵列接收信号进行塔克张量建模,之后通过序贯截断高阶奇异值分解获得塔克张量域信号子空间,最后利用多旋转不变子空间幅相关系获得信号DOA估计。相比于传统矩阵建模方法,塔克张量建模更便于组织多维数据结构,实现高维的数据匹配操作,而序贯截断高阶奇异值分解则可以获得更高的信号子空间估计精度以及后续的DOA估计。仿真结果表明,trpESPRIT方法较之常规矩阵方法和矢量方法可以更好地抑制噪声,具有更高的信号DOA估计精度,在低信噪比和低快拍条件下仍然具有良好的分辨能力。展开更多
文摘多视图聚类已经被广泛研究,它能够采用可用的多源信息来实现更好的聚类性能.然而,大多数之前的工作仍存在两个不足:(1)它们通常关注多视图属性特征的场景,很少留意到多视图属性图数据;(2)它们主要尝试发现一致的结构或多个视图之间的关系,而忽略了多视图观测之间潜在的高阶相关性。为了解决这些问题,我们从广义角度出发,提出了一种新颖的方法,称为混合阶相似性的多视图聚类(Multiview Clustering by Hybridorder Affinity,MCHA).它将结构图和多视图属性特征巧妙融合,同时考虑了低秩概率相似性图和混合阶的相关性.具体而言,我们通过图过滤策略构建了一组保留几何结构的视图特定的平滑表示.同时,我们将从平滑表示中学习得到的多视图概率相似性图堆叠成一个张量,并对该张量给予低秩属性的约束.这可以很好地恢复视图间更高阶的相关性.在八个基准数据集上的实验表明,我们所提出的MCHA方法具有最先进的有效性.
基金Supponed by the National Natural Science Foundation of China under Grant Nos.6060309660533090(国家自然科学基金)+3 种基金the National High-Tech Research and Development Plan of China under Grant No.2006AA010107(国家高技术研究发展计划(863)the N~ional Key Technology R&D Program 0f China under Grant No.2007BAH11B01(国家科技支撑计划)the Program for Changjiang Scholars and Innovative Research Team in University ofChina under Grant Nos.IRT0652PCSIRT(长江学者和创新团队发展计划)
文摘基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。
基金supported by the Natural Science Foundation of China(Grant No.11171083 and 11301123)the Zhejiang Provincial National Science Foundation of China(Grant No.LZ14A010003)
文摘针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via rotational invariance technique,trpESPRIT)方法。首先对阵列接收信号进行塔克张量建模,之后通过序贯截断高阶奇异值分解获得塔克张量域信号子空间,最后利用多旋转不变子空间幅相关系获得信号DOA估计。相比于传统矩阵建模方法,塔克张量建模更便于组织多维数据结构,实现高维的数据匹配操作,而序贯截断高阶奇异值分解则可以获得更高的信号子空间估计精度以及后续的DOA估计。仿真结果表明,trpESPRIT方法较之常规矩阵方法和矢量方法可以更好地抑制噪声,具有更高的信号DOA估计精度,在低信噪比和低快拍条件下仍然具有良好的分辨能力。