针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MT...针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果.展开更多
文摘针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果.
文摘颈动脉的内中膜厚度(IMT)是预测心血管疾病(CVDs)病发程度的重要指标.本文研究并提出一种自动、高效的计算机辅助IMT测量算法,该算法依据先验知识自动提取感兴趣区域(ROI),并采用基于隐马尔可夫随机场(HMRF)模型改进的模糊C均值(FCM)算法分割图像,实现IMT的自动测量.实验结果表明,所提算法对超声图像噪声的鲁棒性较强,IMT自动测量结果与真实值(GT)有很高的一致性:两个数据集合的相关系数为98.52%,平均绝对误差为0.022 0?0.016 4 mm.