Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro...Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.展开更多
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig...Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.展开更多
The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotr...The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.展开更多
Due to its high nutritional and dietotherapy values,highland barley has attracted the attention and favor of people all over the world in recent years.It has been demonstrated that the nutritional components of highla...Due to its high nutritional and dietotherapy values,highland barley has attracted the attention and favor of people all over the world in recent years.It has been demonstrated that the nutritional components of highland barley are comprehensive and unique,with the characteristics of high protein,high fiber,high vitamin,lowfat,low sugar and variety of bioactive components.As the most important component in highland barley,highland barley starch not only has low digestibility,but also has good freeze-thaw stability,high solubility,good emulsion stability and superior film forming performance,which makes it have great application value in food,medicine and industrial production.The content of highland barley protein,which is rich in 18 kinds of amino acids,is higher than that of most grains,and its derivatives play an important role in medical treatment.Unfortunately,highland barley protein cannot form gluten network structure,which limits the application in daily staple food to a certain extent.Highland barley also contains a large amount of dietary fiber,especiallyβ-glucan.Long-term consumption could significantly reduce the incidence of chronic diseases and metabolic syndromes such as heart disease and diabetes.However,the research on the application of highland barley is still in the laboratory stage,which failed to achieve large-scale application in the actual production.The value of highland barley has not been brought into full play,which leads to the waste of its resources and the reduction of its added value.This paper reviewed themacronutrients,health functions and applications of highland barley,aiming to provide some reference for the development of highland barley in food and health industry.展开更多
Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out...Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out for the amount of highland barley powder,white granulated sugar,and shortening. Then,the response surface optimization analysis was made on crispness and sensory score of the biscuit. The experiment indicates that taking the refined flour as the base 100 g( 100%),the formula of 20% highland barley powder,25% white granulated sugar,and 26% shortening can bake crisp biscuit with complete shape,pure flavor and high quality.展开更多
In order to study the influence of highland barley straw ash (HBSA) prepared under certain conditions on the durability of magnesium oxychloride cement mortar (MOCM) under freeze-thaw damage,rapid freeze-thaw cycle te...In order to study the influence of highland barley straw ash (HBSA) prepared under certain conditions on the durability of magnesium oxychloride cement mortar (MOCM) under freeze-thaw damage,rapid freeze-thaw cycle tests were carried out firstly.The relative mass evaluation parameters and the relative compressive strength evaluation parameters,which represent the degradation of freeze-thaw resistance,were used as the indices to study the degradation rule of MOCM.Secondly,nuclear magnetic resonance (NMR) tests were carried out on MOCM under different freeze-thaw cycles to analyze the pore diameter changes in the freeze-thaw process.The microstructure of MOCM was tested by Fourier transform infrared spectroscopy (FTIR),X-ray diffraction (XRD) and scanning electron microscopy (SEM),and then the effect mechanism of HBSA on the anti-freezing performance of MOCM was revealed.Finally,the two-parameter Weibull distribution function was used to analyze the reliability of durability degradation of MOCM added with HBSA under freeze-thaw cycles.The specific conclusions are as follows:With the increase of HBSA's addition,the freeze-thaw resistance of MOCM increase firstly and then decrease.When the addition of HBSA is 10%,the decay rate of relative mass evaluation parameters and relative compressive strength evaluation parameters is the slowest,and the frost resistance is the best.The proportion of harmful pores and more harmful pores in MOCM added with 10% HBSA decreases by 25.11% and 21.34%,compared with that without HBSA before and after freeze-thaw cycles.A lot of magnesium silicate hydrate (M-S-H) gels are generated in MOCM with HBSA content of 10%,which fills part of the pores,so that the proportion of harmful pores and more harmful pores is the lowest.The Weibull function can be effectively applied to the reliability analysis of the freeze-thaw cycle of MOCM added with HBSA,and the theoretical results are in good agreement with the experimental results.展开更多
Water requirement rules and production of highland barley in different sowing time and irrigation levels were studied according to the data in field trial of 2016-2017.Based on analyzing the experimental results,the o...Water requirement rules and production of highland barley in different sowing time and irrigation levels were studied according to the data in field trial of 2016-2017.Based on analyzing the experimental results,the optimal irrigation scheduling and amount in the growth period of highland barley were proposed,which was of great significance to the unification of water saving and high yield of highland barley in the arid agricultural area of Tibet.展开更多
Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),...Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.展开更多
Highland barley is a well-known cereal in Qinghai-Tibet Plateau area with high nutritional value,which has been reported to be a health-promoting grain for the obesity and the diabetes.Fermentation by certain microbio...Highland barley is a well-known cereal in Qinghai-Tibet Plateau area with high nutritional value,which has been reported to be a health-promoting grain for the obesity and the diabetes.Fermentation by certain microbiota can improve the flavor property and nutritional characteristics.In the present study,Lactiplantibacillus plantarum and Saccharomyces cerevisiae were singly or jointly applied to ferment highland barley,and the profile of volatile substances and lipid-lowering effects of the respective extracts were analyzed.Results indicated that either L.plantarum or S.cerevisiae or co-fermentation could consume the polysaccharides of highland barley to provide energy,and dramatically increase the contents of total protein and polyphenol.Gas chromatography-mass spectrometry(GC-MS)analysis revealed that the presence of S.cerevisiae was critical for production of the pleasant flavors,especially for the ethyl ester substances including hexadecanoic acid ethyl,hexanoic acid ethyl ester and so on.Meanwhile,we found that fermented highland barley extracts by L.plantarum exhibited stronger lipid-lowering effects in Caenorhabditis elegans than that by S.cerevisiae,while the co-fermentation not only emitted pleasant odors but also exerted high hypolipidemic function.In all,co-fermentation by L.plantarum and S.cerevisiae was proposed to be a promising processing to improve the flavor and functional properties of highland barley.展开更多
Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still...Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.展开更多
Highland barley (HB) possesses a series of properties such as regulating lipid metabolism and attenuating liver injury. Our study aimed to investigate the effect of HB, highland barley bran (HBB), whole grain highland...Highland barley (HB) possesses a series of properties such as regulating lipid metabolism and attenuating liver injury. Our study aimed to investigate the effect of HB, highland barley bran (HBB), whole grain highland barley (WGHB) on lipid metabolism, liver inflammation, gut microbiota and metabolite profiles in high-fat/cholesterol (HFCD) diet mice. 5 treatment groups were fed a normal control diet or a HFCD with or without HB supplementation for 10 weeks. The results showed that HB especially HBB significantly improved lipid parameters, liver function and injury and blood glucose indexes related to hyperlipidemia compared with HFCD group. In addition, HBB recovered the disorder of gut microbiota by increasing Bacteroidetes /Firmicutes ratio and Lactobacillus and Allobaculum abundances, and decreasing Proteobacteria abundance related to lipid metabolism bacteria. HBB enhanced the levels of 6 short chain fatty acids induced by HFCD. Fecal metabolomics analysis showed that the important differential metabolites between HBB group and HFCD group were deoxycholic acid, myclobutanil and cis -4-Hydroxy-D-proline, and the important differential metabolic pathways were arachidonic acid metabolism, tyrosine metabolism and bile secretion. Results suggested that HBB was an effective dietary intervention candidate to ameliorate hyperlipidemia.展开更多
Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molec...Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molecular diversity of U. hordei, a total of 27 isolates, which were collected from highland barley plants from Tibet, Sichuan, Qinghai, and Gansu provinces/autonomous region, were analyzed using random amplified polymorphic DNA(RAPD) and simple sequence repeat(SSR) markers. Among the 100 RAPD primers used, 24 primers exhibited polymorphism. A total of 111 fragments were amplified, of which 103 were polymorphic with a polymorphic rate of 92.79%. The average observed number of alleles(Na), effective number of alleles(Ne), Nei's genetic diversity(H), Shannon's information index(I) and polymorphism information content(PIC) value in the RAPD markers were 1.9279, 1.5016, 0.2974, 0.4503 and 0.6428, respectively. For the SSR markers, 40 of the 111 primer pairs exhibited polymorphism and provided a total of 119 bands, of which 109 were polymorphic and accounted for 91.60% of the total bands. The Na, Ne, H, I and PIC values of the SSR markers were 1.9160, 1.4639, 0.2757, 0.4211 and 0.4340, respectively. The similarity coefficients ranged from 0.4957 to 0.9261 with an average of 0.7028 among all the 27 isolates used. The dendrogram, which was developed based on the RAPD and SSR combined marker dataset showed that the 27 U. hordei isolates were divided into 3 clusters at similarity coefficient of 0.7314. We determined that RAPD and SSR markers can be successfully used to assess the genetic variation among U. hordei isolates. The RAPD markers revealed higher levels of genetic polymorphism than did the SSR markers in this study. There existed a moderate genetic difference among isolates. The molecular variation and differentiation was somewhat associated with geographical origin but not for all of the isolates.展开更多
Highland barley alcoholic drink(HBD),as one of the most typical rice wines in Qinghai-Tibet plateau area,is generally brewed by adding Jiuqu to highland barley.However,the flavor and quality of HBD fermented with Jiuq...Highland barley alcoholic drink(HBD),as one of the most typical rice wines in Qinghai-Tibet plateau area,is generally brewed by adding Jiuqu to highland barley.However,the flavor and quality of HBD fermented with Jiuqu in various plateau regions are different.This study elucidated the potential correlation between the microbial community,physicochemical properties of five traditional plateau Jiuqu,namely Hongxin1(HX1),Hongxin2(HX2),Huairang(HR),Hoarfrost gypsophila(HG)and Tibet Qu(TQ),and volatile flavor compounds of HBD.Based on high-throughput sequencing(HTS)technology and LEfSe analysis,it was found that the bacteria and fungi of the five traditional plateau Jiuqu were quite different.Differential microorganisms were Weissella and Pichia in HX1,Lactococcus and Kazachstania in HR,Acetobacter and Rhizopus in TQ.Besides,HX1 and HX2 had higher esterification power,TQ had the highest fermentation power while HR had the lowest enzymatic properties.Finally,RDA and Pearson correlation analysis showed that esterification power and moisture content had positive effects on Lactobacillus,fermentation power and saccharification power were highly positively correlated with Pantoea and Rhizopus,but negatively correlated with Aspergillus.In flavor analysis,Rhizopus,Acetobacter were found positively correlated with alcohols and acids,which contributed to the formation of volatile flavor compounds,Lactobacillus_sanfranciscensis and Lactobacillus_sakei were positively correlated with phenolic compounds.This study showed that the flavor of HBD was seriously affected by the microbiota in Jiuqu,which could help to develop new fortified starter to improve the quality of HBD.展开更多
The inhibition capacity of bound-polyphenol rich insoluble dietary fiber(BP-IDF)from highland barley to carbonyl compounds was studied during in vitro gastrointestinal(GI)digestion.More than 97%of fiber-bound polyphen...The inhibition capacity of bound-polyphenol rich insoluble dietary fiber(BP-IDF)from highland barley to carbonyl compounds was studied during in vitro gastrointestinal(GI)digestion.More than 97%of fiber-bound polyphenols were still presented in highland barley BP-IDF(HBBP-IDF)after GI digestion.The fiber-bound polyphenols in HBBP-IDF effectively inhibit carbonyls when simultaneously digested with cookies and French fries and exhibited more pronounced effect during gastric digestion stage,with inhibition of 63.4%for methylglyoxal,54.3%for glyoxal,47.6%for malondialdehyde and 42.4%for 4-hydroxy-2-nonenel,respectively.These findings suggest that HBBP-IDF could be use as functional ingredients able to inhibit the formation of carbonyls during digestion process and maintain healthful digestive tract environment.展开更多
Tibetan highland barley fiber(T-Fiber)contains high dietary fiber(DF)and beta-glucose.Highland barley has been shown to reduce the risk of diseases associated with high-fat diets(HFD).In the present research,we studie...Tibetan highland barley fiber(T-Fiber)contains high dietary fiber(DF)and beta-glucose.Highland barley has been shown to reduce the risk of diseases associated with high-fat diets(HFD).In the present research,we studied whether T-Fiber could ameliorate HFD-induced obesity in mice and explored its regulatory effects on intestinal microbes.Our findings revealed that T-Fiber feeding significantly reduced weight gain and dyslipi-demia,improved glucose tolerance and insulin resistance,alleviated chronic systemic inflammation,and increased short-chain fatty acids(SCFA)in feces in mice.Histological observations confirmed that T-Fiber alleviated Epididymal fat(EF)and lipid accumulation in the liver.In addition,16s rRNA sequencing analysis of mice cecum contents showed that T-Fiber restored the HFD-induced gut microbiota.T-Fiber supplementation increased the abundance of potentially beneficial bacteria Muribaculaceae,Akkermansiaceae,and Lachnospir-aceae_NK4A136_groups,while significantly reducing the abundance of Bacteroidaceae,Prevotellaceae,Rikenella-ceae,and Alloprevotella.Furthermore,the increase in the production of SCFA may be related to the abundance of Lachnospiraceae_NK4A136_group.In conclusion,T-Fiber has some anti-obesity abilities under high-fat feeding and can be developed as a relevant anti-obesity product.展开更多
This study investigated the effects of highland barley’s germination time(24,48,and 72 h)on the thermomechanical,pasting,fermentation,dynamic rheological,molecular mobility,and protein structural properties of oat-wh...This study investigated the effects of highland barley’s germination time(24,48,and 72 h)on the thermomechanical,pasting,fermentation,dynamic rheological,molecular mobility,and protein structural properties of oat-wheat composite flour dough.Germination significantly reduced flour water absorption,freezable water,melting enthalpy,and increased protein weakening compared with native barley(NB)samples.In addition,germination decreased bound and immobilized water and increased the free water compared to the NB-composite flour dough samples,according to the results of a low-field nuclear magnetic resonance spectrometer(LF-NMR).Germination also increased the protein’s extractability and surface hydrophobicity while negatively impacting the starch-protein network;however,it decreased bread-specific volume.Germination for 24 h,on the other hand,had minor effects on dough and bread samples compared to 48 and 72 h.As a result,germination for 24 h under controlled conditions could be used to improve the rheological qualities of highland barley and avoid the adverse rheological effects of the prolonged germination period.展开更多
Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plant...Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae could whether affect the multi-scale structure and physicochemical properties of highland barley starch(HBS).The results of multi-scale structure determination of HBS showed that compared with unfermented HBS(32.27%),fermentation showed a significant increase in relative crystallinity(35.49-39.81%),while the crystal type of HBS as observed from X-ray diffraction(A-type crystalline pattern)did not change.The small angle X-ray scattering revealed that fermentation reduced the amorphous region and increased the crystalline layer thickness of the HBS.Consequently,the changes in the physicochemical properties showed that the peak viscosity,trough viscosity,and final viscosity of HBS were reduced after fermentation,and the aging of starch gel was delayed significantly.Our results showed that Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentations improve the physicochemical properties of HBS by modifying the multi-scale structure of starch,especially the synergistic fermentation effect was more effective.展开更多
Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of thi...Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of this study was to explore an appropriate irrigation scheme to maintain sustainable crop cultivation in this region. The effects of four irrigation levels (full irrigation, mild deficit, moderate deficit, and severe deficit) and three irrigation methods (border, surface drip and subsurface drip) on soil water and salt dynamics, highland barley (Hordeum vulgare L.) yield, and crop water use efficiency were studied by field plot experiments. The results showed that soil salt in 0-100 cm profile was accumulated under all experimental treatments after one season of highland barley planting, but the accumulated salt mass decreased with the decrease of the lower limit of irrigation. Salt mass in 0-100 cm soil profile under subsurface drip irrigation was 16.8%-57.8% and 2.9%-58.4% less than that under border and surface drip irrigation, respectively. The grain yield of highland barley decreased first and then increased with the decrease of the lower limit of irrigation under surface drip and subsurface drip irrigation, but it was on the contrary under border irrigation. Mean grain yield for all irrigation levels under subsurface drip irrigation was 5.7% and 18.8% higher than that under border and surface drip irrigation, respectively. Water use efficiency increased with the decrease of the lower limit of irrigation, and the averaged water use efficiency of all irrigation levels under subsurface drip irrigation was 11.9% and 14.2% higher than that under border and surface drip irrigation, respectively. Considering economic benefit and irrigation water requirement, subsurface drip irrigation with the lower limit of irrigation of 50%-55% field capacity is suggested for highland barley planting in the arid oasis region.展开更多
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金funded by the National Natural Science Foundation of China(32101876)the Discipline ConstructionFood Science and Engineering(SPKX-202202)grants。
文摘Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.
基金supported by the 12th Five-Year Plan for Science and Technology Development of China(2012BAD33B05).
文摘Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.
基金supported by the Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (201003013)the National Basic Research Program of China(2010CB951702)
文摘The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.
基金supported by the Key scientific and technological project of Henan Province (No.202102110143)Talent Projects from Henan University of Technology(No.2018RCJH08)the Joint Foundations from the NSFC-Henan Province (No.U1604235)
文摘Due to its high nutritional and dietotherapy values,highland barley has attracted the attention and favor of people all over the world in recent years.It has been demonstrated that the nutritional components of highland barley are comprehensive and unique,with the characteristics of high protein,high fiber,high vitamin,lowfat,low sugar and variety of bioactive components.As the most important component in highland barley,highland barley starch not only has low digestibility,but also has good freeze-thaw stability,high solubility,good emulsion stability and superior film forming performance,which makes it have great application value in food,medicine and industrial production.The content of highland barley protein,which is rich in 18 kinds of amino acids,is higher than that of most grains,and its derivatives play an important role in medical treatment.Unfortunately,highland barley protein cannot form gluten network structure,which limits the application in daily staple food to a certain extent.Highland barley also contains a large amount of dietary fiber,especiallyβ-glucan.Long-term consumption could significantly reduce the incidence of chronic diseases and metabolic syndromes such as heart disease and diabetes.However,the research on the application of highland barley is still in the laboratory stage,which failed to achieve large-scale application in the actual production.The value of highland barley has not been brought into full play,which leads to the waste of its resources and the reduction of its added value.This paper reviewed themacronutrients,health functions and applications of highland barley,aiming to provide some reference for the development of highland barley in food and health industry.
基金Supported by Agricultural Product Processing Technology and Product Development Project of the 13th Five-Year Plan of Tibet
文摘Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out for the amount of highland barley powder,white granulated sugar,and shortening. Then,the response surface optimization analysis was made on crispness and sensory score of the biscuit. The experiment indicates that taking the refined flour as the base 100 g( 100%),the formula of 20% highland barley powder,25% white granulated sugar,and 26% shortening can bake crisp biscuit with complete shape,pure flavor and high quality.
基金Funded by the National Natural Science Foundation of China (No.51868044)Basic Research Program of Qinghai Province (No.2022-ZJ-921)。
文摘In order to study the influence of highland barley straw ash (HBSA) prepared under certain conditions on the durability of magnesium oxychloride cement mortar (MOCM) under freeze-thaw damage,rapid freeze-thaw cycle tests were carried out firstly.The relative mass evaluation parameters and the relative compressive strength evaluation parameters,which represent the degradation of freeze-thaw resistance,were used as the indices to study the degradation rule of MOCM.Secondly,nuclear magnetic resonance (NMR) tests were carried out on MOCM under different freeze-thaw cycles to analyze the pore diameter changes in the freeze-thaw process.The microstructure of MOCM was tested by Fourier transform infrared spectroscopy (FTIR),X-ray diffraction (XRD) and scanning electron microscopy (SEM),and then the effect mechanism of HBSA on the anti-freezing performance of MOCM was revealed.Finally,the two-parameter Weibull distribution function was used to analyze the reliability of durability degradation of MOCM added with HBSA under freeze-thaw cycles.The specific conclusions are as follows:With the increase of HBSA's addition,the freeze-thaw resistance of MOCM increase firstly and then decrease.When the addition of HBSA is 10%,the decay rate of relative mass evaluation parameters and relative compressive strength evaluation parameters is the slowest,and the frost resistance is the best.The proportion of harmful pores and more harmful pores in MOCM added with 10% HBSA decreases by 25.11% and 21.34%,compared with that without HBSA before and after freeze-thaw cycles.A lot of magnesium silicate hydrate (M-S-H) gels are generated in MOCM with HBSA content of 10%,which fills part of the pores,so that the proportion of harmful pores and more harmful pores is the lowest.The Weibull function can be effectively applied to the reliability analysis of the freeze-thaw cycle of MOCM added with HBSA,and the theoretical results are in good agreement with the experimental results.
基金Supported by Major Science and Technology Projects in Tibet Autonomous Region(XZ201801NA01-3)
文摘Water requirement rules and production of highland barley in different sowing time and irrigation levels were studied according to the data in field trial of 2016-2017.Based on analyzing the experimental results,the optimal irrigation scheduling and amount in the growth period of highland barley were proposed,which was of great significance to the unification of water saving and high yield of highland barley in the arid agricultural area of Tibet.
基金financially supported by the 2018 annual three gorges follow-up research project of the three gorges office of the State Council (YYNY-2017-01)
文摘Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.
基金supported by the China Postdoctoral Science Foundation(2020M671373)Jiangsu Postdoctoral Research Funding Program(2020Z070)+2 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)2036)Key Research and Development Project of Jiangsu Province(BE2020314)Innovation Training Program for College Students(202310299649X).
文摘Highland barley is a well-known cereal in Qinghai-Tibet Plateau area with high nutritional value,which has been reported to be a health-promoting grain for the obesity and the diabetes.Fermentation by certain microbiota can improve the flavor property and nutritional characteristics.In the present study,Lactiplantibacillus plantarum and Saccharomyces cerevisiae were singly or jointly applied to ferment highland barley,and the profile of volatile substances and lipid-lowering effects of the respective extracts were analyzed.Results indicated that either L.plantarum or S.cerevisiae or co-fermentation could consume the polysaccharides of highland barley to provide energy,and dramatically increase the contents of total protein and polyphenol.Gas chromatography-mass spectrometry(GC-MS)analysis revealed that the presence of S.cerevisiae was critical for production of the pleasant flavors,especially for the ethyl ester substances including hexadecanoic acid ethyl,hexanoic acid ethyl ester and so on.Meanwhile,we found that fermented highland barley extracts by L.plantarum exhibited stronger lipid-lowering effects in Caenorhabditis elegans than that by S.cerevisiae,while the co-fermentation not only emitted pleasant odors but also exerted high hypolipidemic function.In all,co-fermentation by L.plantarum and S.cerevisiae was proposed to be a promising processing to improve the flavor and functional properties of highland barley.
基金supported by National Key Technology R&D Program of China(2019YFD1002204)and S&T Development Fund of CAMS.
文摘Highland barley(Hordeum vulgare Linn.cv.nudum Hook.f.)is the principal cereal crop over the Tibetan Plateau(TP).The response of highland barely to climate change in the past decades,especially in terms of yields still remains uncertain.In this study,its responses to climate change were investigated using daily weather data and agriculture data during 1961–2018.The results showed that the annual mean air temperature over the TP increased at 0.33°C per decade during 1961–2018,and the rate of warming increased with altitude,reaching 0.41°C per decade at altitudes of 4500–4700 m.The growing degree days(GDDs)increased by 9.6%during 2011–2018 compared with the 1960s,whereas low temperature degree days(LDDs)decreased by 40.3%over the same period,indicating that the thermal conditions for highland barley cultivation have improved.A strong relationship was observed between the yield of highland barley and LDDs(−0.76,p<0.001)than GDDs(0.58,p<0.001)in Xizang,where sufficient irrigation water is available from the melting of snow cover or glaciers.In Sichuan,with abundant precipitation,significant correlations were noticed between county-level barley yield and GDDs and LDDs(0.60,p<0.001;−0.65,p<0.001).In Qinghai,the dry regions,county-level yields were influenced significantly by temperature and precipitation.These results indicated that climate warming was beneficial to highland barley yield in most region of the TP,mainly due to decreased LDDs.The potential altitude at which highland barley cultivation is feasible increased by approximately 280–484 m during 2016–2018,compared with 1981–1983.In Xizang,highland barley could be cultivated up to an altitude of 4507 m a.s.l.between 2016 and 2018,and it increased to 4179 m a.s.l.in Qinghai.These results could help local government to take actions to adapt to global warming and improve food security.
基金Financial support for this research was provided by the National Natural Science Foundation of China(No.32072263)Jiangsu rice green production and intensive processing technology integration innovation and demonstration application(No.BE2019395)+2 种基金Key R&D Program of Jiangsu Province(BE202113592-2)the Fundamental Research Funds for the Central Universities(JUSRP622010)Agricultural Research Outstanding Talents Training Program(13210291).
文摘Highland barley (HB) possesses a series of properties such as regulating lipid metabolism and attenuating liver injury. Our study aimed to investigate the effect of HB, highland barley bran (HBB), whole grain highland barley (WGHB) on lipid metabolism, liver inflammation, gut microbiota and metabolite profiles in high-fat/cholesterol (HFCD) diet mice. 5 treatment groups were fed a normal control diet or a HFCD with or without HB supplementation for 10 weeks. The results showed that HB especially HBB significantly improved lipid parameters, liver function and injury and blood glucose indexes related to hyperlipidemia compared with HFCD group. In addition, HBB recovered the disorder of gut microbiota by increasing Bacteroidetes /Firmicutes ratio and Lactobacillus and Allobaculum abundances, and decreasing Proteobacteria abundance related to lipid metabolism bacteria. HBB enhanced the levels of 6 short chain fatty acids induced by HFCD. Fecal metabolomics analysis showed that the important differential metabolites between HBB group and HFCD group were deoxycholic acid, myclobutanil and cis -4-Hydroxy-D-proline, and the important differential metabolic pathways were arachidonic acid metabolism, tyrosine metabolism and bile secretion. Results suggested that HBB was an effective dietary intervention candidate to ameliorate hyperlipidemia.
基金sponsored by the National Millet Crops Research and Development System, China (CARS-0712.5-A9)the National Key Technology R&D Program of China, (2014BAD07B03)the National Natural Science Foundation of China (313 71529)
文摘Covered smut, which is caused by Ustilago hordei(Pers.) Lagerh., is one of the most damaging diseases of highland barley(Hordeum vulgare Linn. var. nudum Hook. f) in Tibetan areas of China. To understand the molecular diversity of U. hordei, a total of 27 isolates, which were collected from highland barley plants from Tibet, Sichuan, Qinghai, and Gansu provinces/autonomous region, were analyzed using random amplified polymorphic DNA(RAPD) and simple sequence repeat(SSR) markers. Among the 100 RAPD primers used, 24 primers exhibited polymorphism. A total of 111 fragments were amplified, of which 103 were polymorphic with a polymorphic rate of 92.79%. The average observed number of alleles(Na), effective number of alleles(Ne), Nei's genetic diversity(H), Shannon's information index(I) and polymorphism information content(PIC) value in the RAPD markers were 1.9279, 1.5016, 0.2974, 0.4503 and 0.6428, respectively. For the SSR markers, 40 of the 111 primer pairs exhibited polymorphism and provided a total of 119 bands, of which 109 were polymorphic and accounted for 91.60% of the total bands. The Na, Ne, H, I and PIC values of the SSR markers were 1.9160, 1.4639, 0.2757, 0.4211 and 0.4340, respectively. The similarity coefficients ranged from 0.4957 to 0.9261 with an average of 0.7028 among all the 27 isolates used. The dendrogram, which was developed based on the RAPD and SSR combined marker dataset showed that the 27 U. hordei isolates were divided into 3 clusters at similarity coefficient of 0.7314. We determined that RAPD and SSR markers can be successfully used to assess the genetic variation among U. hordei isolates. The RAPD markers revealed higher levels of genetic polymorphism than did the SSR markers in this study. There existed a moderate genetic difference among isolates. The molecular variation and differentiation was somewhat associated with geographical origin but not for all of the isolates.
文摘Highland barley alcoholic drink(HBD),as one of the most typical rice wines in Qinghai-Tibet plateau area,is generally brewed by adding Jiuqu to highland barley.However,the flavor and quality of HBD fermented with Jiuqu in various plateau regions are different.This study elucidated the potential correlation between the microbial community,physicochemical properties of five traditional plateau Jiuqu,namely Hongxin1(HX1),Hongxin2(HX2),Huairang(HR),Hoarfrost gypsophila(HG)and Tibet Qu(TQ),and volatile flavor compounds of HBD.Based on high-throughput sequencing(HTS)technology and LEfSe analysis,it was found that the bacteria and fungi of the five traditional plateau Jiuqu were quite different.Differential microorganisms were Weissella and Pichia in HX1,Lactococcus and Kazachstania in HR,Acetobacter and Rhizopus in TQ.Besides,HX1 and HX2 had higher esterification power,TQ had the highest fermentation power while HR had the lowest enzymatic properties.Finally,RDA and Pearson correlation analysis showed that esterification power and moisture content had positive effects on Lactobacillus,fermentation power and saccharification power were highly positively correlated with Pantoea and Rhizopus,but negatively correlated with Aspergillus.In flavor analysis,Rhizopus,Acetobacter were found positively correlated with alcohols and acids,which contributed to the formation of volatile flavor compounds,Lactobacillus_sanfranciscensis and Lactobacillus_sakei were positively correlated with phenolic compounds.This study showed that the flavor of HBD was seriously affected by the microbiota in Jiuqu,which could help to develop new fortified starter to improve the quality of HBD.
基金supported by National Natural Science Foundation of China(grant numbers:32202198)。
文摘The inhibition capacity of bound-polyphenol rich insoluble dietary fiber(BP-IDF)from highland barley to carbonyl compounds was studied during in vitro gastrointestinal(GI)digestion.More than 97%of fiber-bound polyphenols were still presented in highland barley BP-IDF(HBBP-IDF)after GI digestion.The fiber-bound polyphenols in HBBP-IDF effectively inhibit carbonyls when simultaneously digested with cookies and French fries and exhibited more pronounced effect during gastric digestion stage,with inhibition of 63.4%for methylglyoxal,54.3%for glyoxal,47.6%for malondialdehyde and 42.4%for 4-hydroxy-2-nonenel,respectively.These findings suggest that HBBP-IDF could be use as functional ingredients able to inhibit the formation of carbonyls during digestion process and maintain healthful digestive tract environment.
基金supported by the China Postdoctoral Science Foun-dation(2017M611169)the Hebei Province Postdoctoral Research Projects(No.B2018003031)the Public Service Platform Project for Selection and Fermentation Technology of Industrial Microorganisms(No.17PTGCCX00190).
文摘Tibetan highland barley fiber(T-Fiber)contains high dietary fiber(DF)and beta-glucose.Highland barley has been shown to reduce the risk of diseases associated with high-fat diets(HFD).In the present research,we studied whether T-Fiber could ameliorate HFD-induced obesity in mice and explored its regulatory effects on intestinal microbes.Our findings revealed that T-Fiber feeding significantly reduced weight gain and dyslipi-demia,improved glucose tolerance and insulin resistance,alleviated chronic systemic inflammation,and increased short-chain fatty acids(SCFA)in feces in mice.Histological observations confirmed that T-Fiber alleviated Epididymal fat(EF)and lipid accumulation in the liver.In addition,16s rRNA sequencing analysis of mice cecum contents showed that T-Fiber restored the HFD-induced gut microbiota.T-Fiber supplementation increased the abundance of potentially beneficial bacteria Muribaculaceae,Akkermansiaceae,and Lachnospir-aceae_NK4A136_groups,while significantly reducing the abundance of Bacteroidaceae,Prevotellaceae,Rikenella-ceae,and Alloprevotella.Furthermore,the increase in the production of SCFA may be related to the abundance of Lachnospiraceae_NK4A136_group.In conclusion,T-Fiber has some anti-obesity abilities under high-fat feeding and can be developed as a relevant anti-obesity product.
基金financially supported by the National Natural Science Foundation of China(32072254)the China Scholarship Council(2018GXZ018752)+3 种基金the Research and Development Program of Tianchang(TZY202002)the Six Talent Peaks Project of Jiangsu Province(NY-119)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province,Jiangnan University(2022-3-1)the“Qing Lan Project in Jiangsu Province”program.
文摘This study investigated the effects of highland barley’s germination time(24,48,and 72 h)on the thermomechanical,pasting,fermentation,dynamic rheological,molecular mobility,and protein structural properties of oat-wheat composite flour dough.Germination significantly reduced flour water absorption,freezable water,melting enthalpy,and increased protein weakening compared with native barley(NB)samples.In addition,germination decreased bound and immobilized water and increased the free water compared to the NB-composite flour dough samples,according to the results of a low-field nuclear magnetic resonance spectrometer(LF-NMR).Germination also increased the protein’s extractability and surface hydrophobicity while negatively impacting the starch-protein network;however,it decreased bread-specific volume.Germination for 24 h,on the other hand,had minor effects on dough and bread samples compared to 48 and 72 h.As a result,germination for 24 h under controlled conditions could be used to improve the rheological qualities of highland barley and avoid the adverse rheological effects of the prolonged germination period.
基金This research was supported by funding from the Shaanxi Provincial Science and Technology Innovation Team(2022TD-15).
文摘Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae could whether affect the multi-scale structure and physicochemical properties of highland barley starch(HBS).The results of multi-scale structure determination of HBS showed that compared with unfermented HBS(32.27%),fermentation showed a significant increase in relative crystallinity(35.49-39.81%),while the crystal type of HBS as observed from X-ray diffraction(A-type crystalline pattern)did not change.The small angle X-ray scattering revealed that fermentation reduced the amorphous region and increased the crystalline layer thickness of the HBS.Consequently,the changes in the physicochemical properties showed that the peak viscosity,trough viscosity,and final viscosity of HBS were reduced after fermentation,and the aging of starch gel was delayed significantly.Our results showed that Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentations improve the physicochemical properties of HBS by modifying the multi-scale structure of starch,especially the synergistic fermentation effect was more effective.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFC0406604).
文摘Fresh water resource scarcity and soil salt accumulation in the root-zone are two key limiting factors for sustainable agricultural development in the oasis region of arid inland basin, northwest China. The aim of this study was to explore an appropriate irrigation scheme to maintain sustainable crop cultivation in this region. The effects of four irrigation levels (full irrigation, mild deficit, moderate deficit, and severe deficit) and three irrigation methods (border, surface drip and subsurface drip) on soil water and salt dynamics, highland barley (Hordeum vulgare L.) yield, and crop water use efficiency were studied by field plot experiments. The results showed that soil salt in 0-100 cm profile was accumulated under all experimental treatments after one season of highland barley planting, but the accumulated salt mass decreased with the decrease of the lower limit of irrigation. Salt mass in 0-100 cm soil profile under subsurface drip irrigation was 16.8%-57.8% and 2.9%-58.4% less than that under border and surface drip irrigation, respectively. The grain yield of highland barley decreased first and then increased with the decrease of the lower limit of irrigation under surface drip and subsurface drip irrigation, but it was on the contrary under border irrigation. Mean grain yield for all irrigation levels under subsurface drip irrigation was 5.7% and 18.8% higher than that under border and surface drip irrigation, respectively. Water use efficiency increased with the decrease of the lower limit of irrigation, and the averaged water use efficiency of all irrigation levels under subsurface drip irrigation was 11.9% and 14.2% higher than that under border and surface drip irrigation, respectively. Considering economic benefit and irrigation water requirement, subsurface drip irrigation with the lower limit of irrigation of 50%-55% field capacity is suggested for highland barley planting in the arid oasis region.