Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) in...Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.展开更多
文摘Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.