Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy cer...Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy ceramics are new emerging coating materials which have been researched and developed in recent years.Compared with traditional oxide ceramics,non-oxide ceramics have better high temperature stability,oxidation resistance and erosion resistance.These characteristics make non-oxide ceramics perform well in extreme environments.It is particularly noteworthy that the non-oxide high entropy ceramic is a uniform solid solution composed of at least four or fiveatoms.Their unique structure and outstanding propertiesshow great potential application in the field of coating.In this paper,the researches aboutregulating microstructure,preparation technology and properties of nitride and its high entropy system,carbide and its high entropy system and boride and its high entropy system in coating field are summarized,and their future development and prospects are prospected.展开更多
High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the ...High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.展开更多
The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coa...The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was u...Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.展开更多
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us...High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.展开更多
Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5...Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5×10^-30S cm^-1),associated lithium polysulfides(PSs),and their migration from the cathode to the anode.In this study,a separator coated with a Ketjen black(KB)/Nafion composite was used in an LSB with a sulfur loading up to 7.88 mg cm^-2to mitigate the PS migration.A minimum specific capacity(Cs)loss of 0.06%was obtained at 0.2 C-rate at a high sulfur loading of 4.39 mg cm^-2.Furthermore,an initial areal capacity up to 6.70 mAh cm^-2 was obtained at a sulfur loading of 7.88 mg cm^-2.The low Cs loss and high areal capacity associated with the high sulfur loading are attributed to the large surface area of the KB and sulfonate group(SO3^-)of Nafion,respectively,which could physically and chemically trap the PSs.展开更多
A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron ...A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron microscope (TEM) and scanning electron microscope (SEM),respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2,Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with durable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and excellent adhesion for both specimens with and without sintering at high temperature. Result from laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30°C during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750m^3 indicates that the coating causes the blast temperature to an average increase of 28°C,reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.展开更多
The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the vol...The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load (100 N) and variable loads (from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced a-Fe coating. In addition, under constant load condition the friction coefficients (FCs) of two coatings increased first and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced a-Fe based coating increased gradually, while that of HVF MTC3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced a-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was difficult to be deformed and grooved.展开更多
The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt ...The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.展开更多
Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microsco...Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microsco- py (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500℃ in static air was inves- tigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approxi- mately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhe- sive wear.展开更多
High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by ...High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by XRD and adhesion strength of TiN coating was measured by scratch test. The worn morphologies and wear mechanism of TiN composite coating were observed and analyzed by using SEM. The results showed that both adhesion strength and hardness of TiN composite coating with ion nitriding interlayer are higher than those of single TiN coating. Ion nitriding interlayer provides a stronger support for TiN coating. With increasing temperature, the wear rates and friction coefficient of all tested coatings increase. The wear resistance of TiN composite coating is better than that of single TiN coating. The wear mechanisms of TiN composite coating are mainly adhesion transfer wear and abrasive wear. The adhesion transfer wear becomes more severe as the test temperature increases. [展开更多
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef...The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.展开更多
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros...(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.展开更多
A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, ...A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution, within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens, A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are a-Fe, T-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.展开更多
To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of ...To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.展开更多
Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by opti...Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by optical microscopy (OM) and X-ray diffractometry (XRD). High temperature erosion (HTE) tests were performed in an erosion tester at different impact angles. The surface morphologies of the eroded coatings were observed on a field emission scanning electron microscope(FE-SEM). The laminated structure is found on all the prepared coatings with the porosity and oxide fraction in the coatings decreasing with the Al content from 0 to 15% (mass fraction). Sample FA3 with 15% Al, possessing the lowest porosity and oxide fraction, has the best HTE resistance, which demonstrates that Al addition can improve the HTE resistance of the coatings. The erosion rate of sample FA1 exhibits a maximum value at 90° impact angle. The maximum erosion rates of both FA2 and FA3 samples appear in the range of 60°-90° impact angles. Erosion loss of the coatings occurs through brittle breaking, cutting and fatigue spalling.展开更多
文摘Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy ceramics are new emerging coating materials which have been researched and developed in recent years.Compared with traditional oxide ceramics,non-oxide ceramics have better high temperature stability,oxidation resistance and erosion resistance.These characteristics make non-oxide ceramics perform well in extreme environments.It is particularly noteworthy that the non-oxide high entropy ceramic is a uniform solid solution composed of at least four or fiveatoms.Their unique structure and outstanding propertiesshow great potential application in the field of coating.In this paper,the researches aboutregulating microstructure,preparation technology and properties of nitride and its high entropy system,carbide and its high entropy system and boride and its high entropy system in coating field are summarized,and their future development and prospects are prospected.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGC23E010001)the Youth Science and Technology Project of Zhejiang Provincial Administration for Market Regulation(No.QN2023427)Science and Techno-logy Project of State Administration for Market Regulation(No.2022MK054).
文摘High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.
基金Funded by the National Natural Science Foundation of China(No.51965023)。
文摘The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
文摘Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.
基金financially supported by the Special Foundation of the Shanghai Education Commission for Nano-Materials Research (0852nm01400)Shanghai Leading Academic Discipline Project (J51402)
文摘High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.
基金the Australian Government and University of Queensland for the research training program scholarship and research facilities used in this study.
文摘Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5×10^-30S cm^-1),associated lithium polysulfides(PSs),and their migration from the cathode to the anode.In this study,a separator coated with a Ketjen black(KB)/Nafion composite was used in an LSB with a sulfur loading up to 7.88 mg cm^-2to mitigate the PS migration.A minimum specific capacity(Cs)loss of 0.06%was obtained at 0.2 C-rate at a high sulfur loading of 4.39 mg cm^-2.Furthermore,an initial areal capacity up to 6.70 mAh cm^-2 was obtained at a sulfur loading of 7.88 mg cm^-2.The low Cs loss and high areal capacity associated with the high sulfur loading are attributed to the large surface area of the KB and sulfonate group(SO3^-)of Nafion,respectively,which could physically and chemically trap the PSs.
基金the Innovation Fund for Technology Based Firms (No06C26213701371)Natural Science Foundation of Shandong Province in China (NoY2006F26)
文摘A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron microscope (TEM) and scanning electron microscope (SEM),respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2,Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with durable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and excellent adhesion for both specimens with and without sintering at high temperature. Result from laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30°C during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750m^3 indicates that the coating causes the blast temperature to an average increase of 28°C,reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.
基金Funded by the National Natural Science Fundation of China(No.51171116)the Ministry of Science and Technology of China(No.2009DFB50350)+1 种基金the Research Foundation of Education Bureau of Hubei Province,China(No.Q20122304)the Foundation of Hubei University of Automotive Technology,China(No.BK201205)
文摘The fabrication of high volume fraction (HVF) M7C3 (M=Cr, Fe) reinforced Fe-based composite coating on ASTM A36 steel plate using plasma transferred arc (PTA) welding was studied. The results showed that the volume fraction of carbide M7C3 was more than sixty percent, and the relative wear resistance of the coating tested on a block-on-ring dry sliding tester at constant load (100 N) and variable loads (from 100 to 300 N) respectively was about 9 and 14 times higher than that of non-reinforced a-Fe coating. In addition, under constant load condition the friction coefficients (FCs) of two coatings increased first and then decreased with increasing sliding distance. However, under variable loads condition the FCs of non-reinforced a-Fe based coating increased gradually, while that of HVF MTC3 reinforced coating decreased as the load exceeded 220 N. The worn surface of non-reinforced a-Fe based coating was easily deformed and grooved, while that of the HVF M7C3 reinforced coating was difficult to be deformed and grooved.
文摘The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.
基金financially supported by the National High-tech Research and Development Program of China(No.2012AA03A513)the Fundamental Research Funds for the Central Universities(No.N140204001)the National Natural Science Foundation of China(Nos.51371044 and 51301037)
文摘Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microsco- py (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500℃ in static air was inves- tigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approxi- mately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhe- sive wear.
文摘High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by XRD and adhesion strength of TiN coating was measured by scratch test. The worn morphologies and wear mechanism of TiN composite coating were observed and analyzed by using SEM. The results showed that both adhesion strength and hardness of TiN composite coating with ion nitriding interlayer are higher than those of single TiN coating. Ion nitriding interlayer provides a stronger support for TiN coating. With increasing temperature, the wear rates and friction coefficient of all tested coatings increase. The wear resistance of TiN composite coating is better than that of single TiN coating. The wear mechanisms of TiN composite coating are mainly adhesion transfer wear and abrasive wear. The adhesion transfer wear becomes more severe as the test temperature increases. [
基金NationalNatureScienceFoundationofChina (No .5 0 0 0 5 0 2 4)
文摘The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0606104)the National Natural Science Foundation of China(No.51702332).
文摘(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.
基金the National Natural Science Foundation of China (No.50474084).
文摘A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution, within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens, A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are a-Fe, T-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by National Basic Research Program of China
文摘To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.
基金Project(2009C31129) supported by the Science and Technology Department of Zhejiang Province, China
文摘Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by optical microscopy (OM) and X-ray diffractometry (XRD). High temperature erosion (HTE) tests were performed in an erosion tester at different impact angles. The surface morphologies of the eroded coatings were observed on a field emission scanning electron microscope(FE-SEM). The laminated structure is found on all the prepared coatings with the porosity and oxide fraction in the coatings decreasing with the Al content from 0 to 15% (mass fraction). Sample FA3 with 15% Al, possessing the lowest porosity and oxide fraction, has the best HTE resistance, which demonstrates that Al addition can improve the HTE resistance of the coatings. The erosion rate of sample FA1 exhibits a maximum value at 90° impact angle. The maximum erosion rates of both FA2 and FA3 samples appear in the range of 60°-90° impact angles. Erosion loss of the coatings occurs through brittle breaking, cutting and fatigue spalling.