The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrati...The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.展开更多
Two strains of bacteria were isolated from nitrile polluted soils, and identified as Corynebacterium boffmanii and Arthrobacter flavescens. Acetonitrile, propionitrile, butyronitrile and acrylonitrile were degraded by...Two strains of bacteria were isolated from nitrile polluted soils, and identified as Corynebacterium boffmanii and Arthrobacter flavescens. Acetonitrile, propionitrile, butyronitrile and acrylonitrile were degraded by these bacteria to yield corresponding amides, carboxylic acids and ammonia. The nitrile-degrading abilities of these strains were investigated. The removal rates for the nitrile were nearly 100%, after these bacteria were grown in medium containing 10000 ppm of aceto-, propio-, or butyronitrile at 28 ℃ for 24h. When the reaction mkture consisting of 5000 ppm of above mentioned nitriles or acrylonitrile and 20g (dry cell) /L resting cells of the two strains in 0.06mol/L phosphate buffer (pH7.5) was incubated separately at 25 ℃ with moderate shaking for 15 or 45 min, the nitrile could be degraded completely. The optimum growth conditions for C.hoffmanii and A.flavescens were studied as well.展开更多
Paper and pulp mill is a source of major pollution generating industry leaving huge amount of intensely colored effluent to the receiving end. Rapid increase of population and the increased demand for industrial estab...Paper and pulp mill is a source of major pollution generating industry leaving huge amount of intensely colored effluent to the receiving end. Rapid increase of population and the increased demand for industrial establishments to meet human needs have created problems such as over exploitation of available resources, increased pollution taking place on land, air and water environment. The intention of this research paper is to identify predominant bacteria and fungi in paper and pulp mill effluent in addition to evaluate the degradation efficiency of individual isolates and combination of isolates. Treatment efficiency of individual isolates and combination of isolates are evaluated by shake flask method. Combination of Pseudomonas Alkaligenes, Bacillus subtilis along with Trichoderma reesei shows higher BOD, COD reduction of 99% and 85% respectively. As individual isolates Pseudomonas Alkaligenes show 92% BOD reduction and 77% COD reduction over other bacterial isolates and Trichoderma reesei removed 99% BOD and 80% COD respectively.展开更多
Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal...Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion.展开更多
[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identifie...[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.展开更多
Phenolic compounds,as well as other aromatic compounds,have been reported to be abundant in hadal trenches.Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these co...Phenolic compounds,as well as other aromatic compounds,have been reported to be abundant in hadal trenches.Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds,direct microbiological,genetic and biochemical evidence under in situ pressures remain absent.Here,a microbial consortium and a pure culture of Pseudomonas,newly isolated from Mariana Trench sediments,efficiently degraded phenol under pressures up to 70 and 60 MPa,respectively,with concomitant increase in biomass.By analyzing a high-pressure(70 MPa)culture metatranscriptome,not only was the entire range of metabolic processes under high pressure generated,but also genes encod-ing complete phenol degradation via ortho-and meta-cleavage pathways were revealed.The isolate of Pseudomonas also contained genes encoding the complete degradation pathway.Six transcribed genes(dmpKLMNOP_(sed))were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression.In addition,key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes.At microbiological,genetic,bioinformatics,and biochemical levels,this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures.This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches.展开更多
Vegetable oil Spills are becoming frequent and are potentially more challenging than petroleum hydrocarbon spills. Microbial lipases occupy a place of prominence among biocatalysts are often used for remediation of ve...Vegetable oil Spills are becoming frequent and are potentially more challenging than petroleum hydrocarbon spills. Microbial lipases occupy a place of prominence among biocatalysts are often used for remediation of vegetable oil-polluted sites. This work was carried out to isolate microorganisms from oil-polluted sites and screen them for their lipolytic activity. Microorganisms were isolated from eight experimental soil samples contaminated with different types of vegetable oil, soil from an oil mill in Ibadan, and normal uncontaminated soil as a control. The isolates were characterized, identified and those common to at least one of the experimental sites and oil mill sites were screened for their lipolytic activity. Data obtained were analysed using Duncan Multiple Range Test. Seventy three microorganisms were isolated from the polluted soil and identified as species of Bacillus (16), Pseudomonas (12), Flavobacterium (6), Alcaligenes (2), Proteus (3), Micrococcus (1), Aspergillus (9), Penicillium (6), Saccharomyces (4), Geotrichum (1), Kluveromyces (1). Bacillus subtilis, Bacillus licheniformic, Pseudomonas cepacia, Pseudomonas fluorescens, Flavobacterium sp., Alcaligenes sp. and Candida parapsilosis which were common to at least one of the experimental site and oil mill site were preliminarily screened for lipolytic activity and all nine confirmed by presence of halos around the colonies. These screened organisms have potential for the degradation of fatty waste. They could therefore be employed in environmental clean-up of vegetable oil spill site.展开更多
Polyvinyl alcohol( PVA) is a water-soluble synthetic polymer that is hard to biodegrade. PVA-degrading microorganisms were previously reported as unitary bacteria and most of them have been identified as aerobes. In t...Polyvinyl alcohol( PVA) is a water-soluble synthetic polymer that is hard to biodegrade. PVA-degrading microorganisms were previously reported as unitary bacteria and most of them have been identified as aerobes. In this work,a microbial community was cultured anaerobically and its degradation performance and biodiversity were analyzed. The microbial community was cultured for more than 40 d,which represents a highly efficient degradation performance with a chemical oxygen demand removal efficiency of 88. 48%. Operational taxonomic unit-based analysis of the sequences revealed a highly diverse community in the reactor. To note,metagenome 16s rDNA sequencing delineated 19 phyla and 41 classes. Specifically, proteobacteria, chlamydiae, bacteroidetes,firmicutes,and planctomycetes play key roles in the biodegradation processes. Moreover,the betaproteobacteria class belonging to the proteobacteria phylum was the predominant bacterial members in this community. Our results demonstrated that anaerobic treatment of PVA wastewater is feasible and confers degradation by a highly diverse microbial community.展开更多
文摘The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy.
基金This project was supported by National Natural Science Foundation of China.
文摘Two strains of bacteria were isolated from nitrile polluted soils, and identified as Corynebacterium boffmanii and Arthrobacter flavescens. Acetonitrile, propionitrile, butyronitrile and acrylonitrile were degraded by these bacteria to yield corresponding amides, carboxylic acids and ammonia. The nitrile-degrading abilities of these strains were investigated. The removal rates for the nitrile were nearly 100%, after these bacteria were grown in medium containing 10000 ppm of aceto-, propio-, or butyronitrile at 28 ℃ for 24h. When the reaction mkture consisting of 5000 ppm of above mentioned nitriles or acrylonitrile and 20g (dry cell) /L resting cells of the two strains in 0.06mol/L phosphate buffer (pH7.5) was incubated separately at 25 ℃ with moderate shaking for 15 or 45 min, the nitrile could be degraded completely. The optimum growth conditions for C.hoffmanii and A.flavescens were studied as well.
文摘Paper and pulp mill is a source of major pollution generating industry leaving huge amount of intensely colored effluent to the receiving end. Rapid increase of population and the increased demand for industrial establishments to meet human needs have created problems such as over exploitation of available resources, increased pollution taking place on land, air and water environment. The intention of this research paper is to identify predominant bacteria and fungi in paper and pulp mill effluent in addition to evaluate the degradation efficiency of individual isolates and combination of isolates. Treatment efficiency of individual isolates and combination of isolates are evaluated by shake flask method. Combination of Pseudomonas Alkaligenes, Bacillus subtilis along with Trichoderma reesei shows higher BOD, COD reduction of 99% and 85% respectively. As individual isolates Pseudomonas Alkaligenes show 92% BOD reduction and 77% COD reduction over other bacterial isolates and Trichoderma reesei removed 99% BOD and 80% COD respectively.
基金supported by the National Key Research and Development Program of China(No.2023YFD2401504)the National Natural Science Foundation of China(Nos.U21A20271,32225039)+2 种基金the Key R&D Program of Shandong Province(No.2022TZXD001)the Earmarked Fund for CARS(No.CARS-48)the Qingdao Shinan District Science and Technology Plan Project(No.2022-3-010-SW).
文摘Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion.
基金Supported by Technology Major Projects for Cultivation of New Varieties of National Genetically Modified Organism(2008ZX08005-002)~~
文摘[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.
基金supported by the National Natural Science Foundation of China(Grants 91951106,92051104)。
文摘Phenolic compounds,as well as other aromatic compounds,have been reported to be abundant in hadal trenches.Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds,direct microbiological,genetic and biochemical evidence under in situ pressures remain absent.Here,a microbial consortium and a pure culture of Pseudomonas,newly isolated from Mariana Trench sediments,efficiently degraded phenol under pressures up to 70 and 60 MPa,respectively,with concomitant increase in biomass.By analyzing a high-pressure(70 MPa)culture metatranscriptome,not only was the entire range of metabolic processes under high pressure generated,but also genes encod-ing complete phenol degradation via ortho-and meta-cleavage pathways were revealed.The isolate of Pseudomonas also contained genes encoding the complete degradation pathway.Six transcribed genes(dmpKLMNOP_(sed))were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression.In addition,key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes.At microbiological,genetic,bioinformatics,and biochemical levels,this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures.This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches.
文摘Vegetable oil Spills are becoming frequent and are potentially more challenging than petroleum hydrocarbon spills. Microbial lipases occupy a place of prominence among biocatalysts are often used for remediation of vegetable oil-polluted sites. This work was carried out to isolate microorganisms from oil-polluted sites and screen them for their lipolytic activity. Microorganisms were isolated from eight experimental soil samples contaminated with different types of vegetable oil, soil from an oil mill in Ibadan, and normal uncontaminated soil as a control. The isolates were characterized, identified and those common to at least one of the experimental sites and oil mill sites were screened for their lipolytic activity. Data obtained were analysed using Duncan Multiple Range Test. Seventy three microorganisms were isolated from the polluted soil and identified as species of Bacillus (16), Pseudomonas (12), Flavobacterium (6), Alcaligenes (2), Proteus (3), Micrococcus (1), Aspergillus (9), Penicillium (6), Saccharomyces (4), Geotrichum (1), Kluveromyces (1). Bacillus subtilis, Bacillus licheniformic, Pseudomonas cepacia, Pseudomonas fluorescens, Flavobacterium sp., Alcaligenes sp. and Candida parapsilosis which were common to at least one of the experimental site and oil mill site were preliminarily screened for lipolytic activity and all nine confirmed by presence of halos around the colonies. These screened organisms have potential for the degradation of fatty waste. They could therefore be employed in environmental clean-up of vegetable oil spill site.
基金Science and Technology Plan of Henan Province,China(No.132300410080)North China University of Water Resources and Electric Power Postgraduate Education Innovation Program,China(No.YK2015-13)
文摘Polyvinyl alcohol( PVA) is a water-soluble synthetic polymer that is hard to biodegrade. PVA-degrading microorganisms were previously reported as unitary bacteria and most of them have been identified as aerobes. In this work,a microbial community was cultured anaerobically and its degradation performance and biodiversity were analyzed. The microbial community was cultured for more than 40 d,which represents a highly efficient degradation performance with a chemical oxygen demand removal efficiency of 88. 48%. Operational taxonomic unit-based analysis of the sequences revealed a highly diverse community in the reactor. To note,metagenome 16s rDNA sequencing delineated 19 phyla and 41 classes. Specifically, proteobacteria, chlamydiae, bacteroidetes,firmicutes,and planctomycetes play key roles in the biodegradation processes. Moreover,the betaproteobacteria class belonging to the proteobacteria phylum was the predominant bacterial members in this community. Our results demonstrated that anaerobic treatment of PVA wastewater is feasible and confers degradation by a highly diverse microbial community.