Soil erosion on highway side-slope has been recognized as a cause of environmental damage and a potential threat to road embankments in the high-altitude permafrost regions.To assess the risk to roads and to protect t...Soil erosion on highway side-slope has been recognized as a cause of environmental damage and a potential threat to road embankments in the high-altitude permafrost regions.To assess the risk to roads and to protect them effectively,it is crucial to clarify the mechanisms governing roadside erosion.However,the cold climate and extremely vulnerable environment under permafrost conditions may result in a unique process of roadside erosion,which differs from the results of current studies conducted at lower altitudes.In this study,a field survey was conducted to investigate side-slope rill erosion along the permafrost section of a highway on the Qinghai‒Tibet Plateau of China.Variations in erosion rates have been revealed,and intense erosion risks(with an average erosion rate of 13.05 kg/m^(2)/a)have been identified on the northern side of the Tanggula Mountains.In the case of individual rills,the detailed rill morphology data indicate that the rill heads are generally close to the slope top and that erosion predominantly occurs in the upper parts of highway slopes,as they are affected by road surface runoff.In the road segment scale,the Pearson correlation and principal component analysis results revealed that the protective effect of vegetation,which was influenced by precipitation,was greater than the erosive effect of precipitation on roadside erosion.A random forest model was then adopted to quantify the importance of influencing factors,and the slope gradient was identified as the most significant factor,with a value of 0.474.Accordingly,the integrated slope and slope length index(L0.5S2)proved to be a reliable predictor,and a comprehensive model was built for highway side-slope rill erosion prediction(model efficiency=0.802).These results could be helpful for highway side-slope conservation and ecological risk prediction in alpine permafrost areas.展开更多
In order to respond to the national policy of focusing on the service of building a new development pattern and promoting high-quality development,and to reduce the cost of greening projects while ensuring the effect ...In order to respond to the national policy of focusing on the service of building a new development pattern and promoting high-quality development,and to reduce the cost of greening projects while ensuring the effect of highway landscape,a process and cost control points of highway greening design,construction,and maintenance are summarized through a review of the literature.Additionally,this paper examines the attributes of highway greening and proposes cost control strategies that are aligned with these attributes.It is proposed that the implementation of cost control strategies for highway greening should commence at the project establishment phase,with the objective of establishing a comprehensive and effective cost management control system.While guaranteeing the greening landscape effect and the duration of the project,it is essential to regulate the crucial nodes in each phase of the design,construction,and maintenance process.Furthermore,it is vital to facilitate close collaboration between all parties involved,thereby reducing costs,conserving resources,and lowering energy consumption.This approach can also lead to enhanced economic and social benefits for highway greening projects.展开更多
In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the m...In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.展开更多
It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo...It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.展开更多
In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchica...In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchical analysis method.However,the relationship between the defects and the technical condition of the bridges warrants further exploration.To address this situation,this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges.Firstly,collect the inspection records of highway bridges in a certain region of China,then standardize the severity of diverse defects in accordance with relevant specifications.Secondly,in order to enhance the independence between the defects,the key defect indicators were screened using Principal Component Analysis(PCA)in combination with the weights of the building blocks.Based on this,an enhanced Naive Bayesian Classification(NBC)algorithm is established for the intelligent diagnosis of technical conditions of highway bridges,juxtaposed with four other algorithms for comparison.Finally,key defect variables that affect changes in bridge grades are discussed.The results showed that the technical condition level of the superstructure had the highest correlation with cracks;the PCA-NBC algorithm achieved an accuracy of 93.50%of the predicted values,which was the highest improvement of 19.43%over other methods.The purpose of this paper is to provide inspectors with a convenient and predictive information-rich method to intelligently diagnose the technical condition of bridges based on bridge defects.The results of this research can help bridge inspectors and even non-specialists to better understand the condition of bridge defects.展开更多
Highway project management involves overseeing the on-site construction of a highway project,taking into account the specific circumstances and conditions of the site.This type of management requires a high level of e...Highway project management involves overseeing the on-site construction of a highway project,taking into account the specific circumstances and conditions of the site.This type of management requires a high level of expertise and is characterized by its dynamic and systematic approach.Effective on-site management can ensure the quality,cost-saving,smooth progress,and safety of highway construction.However,there are still some problems in the implementation of site management in some highway projects,which seriously affect the improvement of site management.This paper analyzes the characteristics and existing problems of highway engineering management,and puts forward the effective strategies of site management,hoping that this study will help to improve highway engineering site management.展开更多
Effective cost control in the investment and design phases of highway construction is crucial for managing project expenses.However,current management practices often overlook pre-construction cost management,leading ...Effective cost control in the investment and design phases of highway construction is crucial for managing project expenses.However,current management practices often overlook pre-construction cost management,leading to budget overruns and project delays during later stages.To ensure the smooth execution and cost control of highway construction projects,this paper examines the significance of cost control,evaluates the current state and challenges of highway construction,and proposes strategies for cost management.These strategies aim to establish a robust foundation for cost management in highway projects.展开更多
The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The ma...The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.展开更多
This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan for...This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.展开更多
This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade sett...This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade settlement control standard that states that the maximum differential settlement value should be less than 5 cm when the embankment fill height exceeds 20 m.Similarly,the maximum differential settlement value should be less than 10 cm when the embankment fill height does not exceed 20 m.The findings of the study can provide a useful reference for the design of roadbed widening in highway reconstruction and expansion projects.展开更多
This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of ...This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of applying this technology in highway construction are provided.Besides,strategies for enhancing its construction quality are also proposed.The objective of this analysis is to improve the safety and quality of similar projects.展开更多
Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some ...Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.展开更多
This article analyzes the implementation of new environmentally friendly design practices in the construction of mountain highways.It covers topics such as green highway design concepts,alignment principles,and green ...This article analyzes the implementation of new environmentally friendly design practices in the construction of mountain highways.It covers topics such as green highway design concepts,alignment principles,and green practices specifically for mountainous highway design.This analysis aims to provide useful insights for creating green mountain highways that meet the demands of modern times.展开更多
This paper focuses on the route and roadbed pavement design in highway reconstruction and upgrading projects.It discusses the importance of project design for highway reconstruction and upgrading,highlighting key aspe...This paper focuses on the route and roadbed pavement design in highway reconstruction and upgrading projects.It discusses the importance of project design for highway reconstruction and upgrading,highlighting key aspects of route design and roadbed pavement design.The analysis reveals that the main design considerations in these projects include controlling factors of route reconstruction,expansion,and upgrading,as well as route plan design and longitudinal section design combined with roadbed pavement.In roadbed pavement design,it is crucial for designers to thoroughly collect existing data and make reasonable use of the current roadbed and pavement to develop a comprehensive design scheme.This analysis aims to provide a reference for the reasonable design of such projects.展开更多
The transportation system is vital for social and economic development.With the rapid economic development,the demand for highways has been increasing.Mechanical and electrical engineering is a crucial part of highway...The transportation system is vital for social and economic development.With the rapid economic development,the demand for highways has been increasing.Mechanical and electrical engineering is a crucial part of highway construction,affecting the expressway’s later use.Applying building information modeling(BIM)technology in highway electromechanical engineering allows for the visibility and simulation of mechanical and electrical engineering construction,providing scientific guidance for construction.In this research,the author analyzes the advantages of BIM technology in highway electromechanical engineering and the basic composition of electromechanical engineering.The research proposes strategies and cases for applying BIM technology in highway electromechanical engineering.The ultimate goal of this research is to improve the construction of highways in terms of electromechanical engineering.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project...In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.展开更多
Critical links are defined as easily damaged links with massive transport in highway networks, which also need intensive improvement. The total travel time increment caused by a link's failure reflects its importance...Critical links are defined as easily damaged links with massive transport in highway networks, which also need intensive improvement. The total travel time increment caused by a link's failure reflects its importance and is taken as the measure of importance. Links are subdivided into segments according to their structure features and environments. Each segment's unreliability is the probability of its function failure that cannot be recovered within an expected time. The measure of criticality is defined as the expected total travel time increment and can be obtained from the product of importance and reliability. It reflects a links' importance and ability to provide continuous service for evacuation and rescues under earthquake situation. Critical links can then be identified from the sequence of their criticality. These measures are calculated in the highway network of earthquake-hit areas in Wenchuan. Results collected in geographic information system (GIS) visualization are consistent with the situation revealed in this earthquake, which indicates that the presented method can be used to identify critical links in advance and give guidance regarding refugee evacuation and facility protection from earthquakes.展开更多
Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn...Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn are analyzed.The total and dissolved event mean concentrations of Cu Pb and Zn are calculated and the loads of heavy metals attached to particles sampled before and after rainfall are also studied.A test section on highway road was swept in different frequencies during a week and the amount of removed particles was measured.Based on the analysis of highway runoff and road sweeping a prediction equation is established to calculate the pollution control efficiency of the sweeping measure and the results indicate that the 1 time/week road sweeping method can remove 47.93% of dissolved Cu 46.87% of Pb and 44.21% of Zn.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP),grant number 2021QZKK0203the National Key Research and Development Program of China,grant number 2021YFB2600105.
文摘Soil erosion on highway side-slope has been recognized as a cause of environmental damage and a potential threat to road embankments in the high-altitude permafrost regions.To assess the risk to roads and to protect them effectively,it is crucial to clarify the mechanisms governing roadside erosion.However,the cold climate and extremely vulnerable environment under permafrost conditions may result in a unique process of roadside erosion,which differs from the results of current studies conducted at lower altitudes.In this study,a field survey was conducted to investigate side-slope rill erosion along the permafrost section of a highway on the Qinghai‒Tibet Plateau of China.Variations in erosion rates have been revealed,and intense erosion risks(with an average erosion rate of 13.05 kg/m^(2)/a)have been identified on the northern side of the Tanggula Mountains.In the case of individual rills,the detailed rill morphology data indicate that the rill heads are generally close to the slope top and that erosion predominantly occurs in the upper parts of highway slopes,as they are affected by road surface runoff.In the road segment scale,the Pearson correlation and principal component analysis results revealed that the protective effect of vegetation,which was influenced by precipitation,was greater than the erosive effect of precipitation on roadside erosion.A random forest model was then adopted to quantify the importance of influencing factors,and the slope gradient was identified as the most significant factor,with a value of 0.474.Accordingly,the integrated slope and slope length index(L0.5S2)proved to be a reliable predictor,and a comprehensive model was built for highway side-slope rill erosion prediction(model efficiency=0.802).These results could be helpful for highway side-slope conservation and ecological risk prediction in alpine permafrost areas.
文摘In order to respond to the national policy of focusing on the service of building a new development pattern and promoting high-quality development,and to reduce the cost of greening projects while ensuring the effect of highway landscape,a process and cost control points of highway greening design,construction,and maintenance are summarized through a review of the literature.Additionally,this paper examines the attributes of highway greening and proposes cost control strategies that are aligned with these attributes.It is proposed that the implementation of cost control strategies for highway greening should commence at the project establishment phase,with the objective of establishing a comprehensive and effective cost management control system.While guaranteeing the greening landscape effect and the duration of the project,it is essential to regulate the crucial nodes in each phase of the design,construction,and maintenance process.Furthermore,it is vital to facilitate close collaboration between all parties involved,thereby reducing costs,conserving resources,and lowering energy consumption.This approach can also lead to enhanced economic and social benefits for highway greening projects.
文摘In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.
基金The research described in this paper was financially supported by Youth Science Foundation Project’Research on Failure Mechanism and Evaluation Method of Sand Control Measures for Railway Machinery in Sandy Area’(12302511)Ningxia Transportation Department Science and Technology Project(20200173)Central guide local science and technology development funds(22ZY1QA005)。
文摘It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.
基金financially supported by the National Natural Science Foundation of China(No.51808301)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202248860)the National“111”Centre on Safety and Intelligent Operation of Sea Bridge(D21013).
文摘In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchical analysis method.However,the relationship between the defects and the technical condition of the bridges warrants further exploration.To address this situation,this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges.Firstly,collect the inspection records of highway bridges in a certain region of China,then standardize the severity of diverse defects in accordance with relevant specifications.Secondly,in order to enhance the independence between the defects,the key defect indicators were screened using Principal Component Analysis(PCA)in combination with the weights of the building blocks.Based on this,an enhanced Naive Bayesian Classification(NBC)algorithm is established for the intelligent diagnosis of technical conditions of highway bridges,juxtaposed with four other algorithms for comparison.Finally,key defect variables that affect changes in bridge grades are discussed.The results showed that the technical condition level of the superstructure had the highest correlation with cracks;the PCA-NBC algorithm achieved an accuracy of 93.50%of the predicted values,which was the highest improvement of 19.43%over other methods.The purpose of this paper is to provide inspectors with a convenient and predictive information-rich method to intelligently diagnose the technical condition of bridges based on bridge defects.The results of this research can help bridge inspectors and even non-specialists to better understand the condition of bridge defects.
文摘Highway project management involves overseeing the on-site construction of a highway project,taking into account the specific circumstances and conditions of the site.This type of management requires a high level of expertise and is characterized by its dynamic and systematic approach.Effective on-site management can ensure the quality,cost-saving,smooth progress,and safety of highway construction.However,there are still some problems in the implementation of site management in some highway projects,which seriously affect the improvement of site management.This paper analyzes the characteristics and existing problems of highway engineering management,and puts forward the effective strategies of site management,hoping that this study will help to improve highway engineering site management.
文摘Effective cost control in the investment and design phases of highway construction is crucial for managing project expenses.However,current management practices often overlook pre-construction cost management,leading to budget overruns and project delays during later stages.To ensure the smooth execution and cost control of highway construction projects,this paper examines the significance of cost control,evaluates the current state and challenges of highway construction,and proposes strategies for cost management.These strategies aim to establish a robust foundation for cost management in highway projects.
文摘The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.
文摘This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.
文摘This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade settlement control standard that states that the maximum differential settlement value should be less than 5 cm when the embankment fill height exceeds 20 m.Similarly,the maximum differential settlement value should be less than 10 cm when the embankment fill height does not exceed 20 m.The findings of the study can provide a useful reference for the design of roadbed widening in highway reconstruction and expansion projects.
文摘This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of applying this technology in highway construction are provided.Besides,strategies for enhancing its construction quality are also proposed.The objective of this analysis is to improve the safety and quality of similar projects.
文摘Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.
文摘This article analyzes the implementation of new environmentally friendly design practices in the construction of mountain highways.It covers topics such as green highway design concepts,alignment principles,and green practices specifically for mountainous highway design.This analysis aims to provide useful insights for creating green mountain highways that meet the demands of modern times.
文摘This paper focuses on the route and roadbed pavement design in highway reconstruction and upgrading projects.It discusses the importance of project design for highway reconstruction and upgrading,highlighting key aspects of route design and roadbed pavement design.The analysis reveals that the main design considerations in these projects include controlling factors of route reconstruction,expansion,and upgrading,as well as route plan design and longitudinal section design combined with roadbed pavement.In roadbed pavement design,it is crucial for designers to thoroughly collect existing data and make reasonable use of the current roadbed and pavement to develop a comprehensive design scheme.This analysis aims to provide a reference for the reasonable design of such projects.
文摘The transportation system is vital for social and economic development.With the rapid economic development,the demand for highways has been increasing.Mechanical and electrical engineering is a crucial part of highway construction,affecting the expressway’s later use.Applying building information modeling(BIM)technology in highway electromechanical engineering allows for the visibility and simulation of mechanical and electrical engineering construction,providing scientific guidance for construction.In this research,the author analyzes the advantages of BIM technology in highway electromechanical engineering and the basic composition of electromechanical engineering.The research proposes strategies and cases for applying BIM technology in highway electromechanical engineering.The ultimate goal of this research is to improve the construction of highways in terms of electromechanical engineering.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
文摘In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.
基金The National High Technology Research and Development Program of China(863 Program)(No2007AA11Z205)the Jiangsu Graduate Innovation Program
文摘Critical links are defined as easily damaged links with massive transport in highway networks, which also need intensive improvement. The total travel time increment caused by a link's failure reflects its importance and is taken as the measure of importance. Links are subdivided into segments according to their structure features and environments. Each segment's unreliability is the probability of its function failure that cannot be recovered within an expected time. The measure of criticality is defined as the expected total travel time increment and can be obtained from the product of importance and reliability. It reflects a links' importance and ability to provide continuous service for evacuation and rescues under earthquake situation. Critical links can then be identified from the sequence of their criticality. These measures are calculated in the highway network of earthquake-hit areas in Wenchuan. Results collected in geographic information system (GIS) visualization are consistent with the situation revealed in this earthquake, which indicates that the presented method can be used to identify critical links in advance and give guidance regarding refugee evacuation and facility protection from earthquakes.
基金The National Science and Technology Major Project of China(No.2008ZX07010-008-04)
文摘Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn are analyzed.The total and dissolved event mean concentrations of Cu Pb and Zn are calculated and the loads of heavy metals attached to particles sampled before and after rainfall are also studied.A test section on highway road was swept in different frequencies during a week and the amount of removed particles was measured.Based on the analysis of highway runoff and road sweeping a prediction equation is established to calculate the pollution control efficiency of the sweeping measure and the results indicate that the 1 time/week road sweeping method can remove 47.93% of dissolved Cu 46.87% of Pb and 44.21% of Zn.