Subgrade construction is frequently interrupted due to precipitation,soil shortage,and environmental protection.Therefore,increasing the thickness layer is required to reduce construction costs and to allow highways t...Subgrade construction is frequently interrupted due to precipitation,soil shortage,and environmental protection.Therefore,increasing the thickness layer is required to reduce construction costs and to allow highways to be placed into service earlier.This paper presents a series of full-scale field experiments evaluating the compaction quality of gravel subgrade with large-thickness layers of 65 cm and 80 cm using heavy vibratory rollers.An improved sand cone method was first proposed and calibrated to investigate the distribution of soil compaction degree across the full subgrade depth.Results showed that dynamic soil stresses caused by the heavy vibratory rollers were 2.4–5.9 times larger than those of traditional rollers,especially at deeper depths,which were large enough to densify the soils to the full depth.A unified empirical formula was proposed to determine the vertical distribution of dynamic soil stresses caused by roller excitation.It was demonstrated that soils were effectively compacted in a uniform fashion with respect to the full depth to 96.0%–97.2%and 94.1%–95.4%for the large-thickness layers of 65 cm and 80 cm within 6 or 7 passes,respectively.Empirically,linear formulae were finally established between soil compaction degree and the subgrade reaction modulus,dynamic modulus of deformation,dynamic deflection,and relative difference of settlement to conveniently evaluate the compaction qualities.It is demonstrated that increasing the thickness layer by means of heavy rollers can significantly reduce the cost and time burdens involved in construction while ensuring overall subgrade quality.展开更多
With lots of indoor and outdoor experiments, several key technical issues in construc-tion of the Desert Highway have been solved satisfactorily, on the basis of great achievements ofthe studies in respects of dry com...With lots of indoor and outdoor experiments, several key technical issues in construc-tion of the Desert Highway have been solved satisfactorily, on the basis of great achievements ofthe studies in respects of dry compaction on sand base, design parameters, structure combinationof subgrade and pavement, stabilization analysis of sand base strengthened with geotextile and acomplete set of construction techniques. It is the first time the achievements of the study weresuccessfully applied in the Taklimakan Desert where the natural condition is extremely harsh. Ithas been proved that it is economic and reasonable with reliable techniques and simple construc-tion methods. The Desert Highway constructed with the achievements is the first-grade highwayrunning through huge migratory desert for long distance in the world.展开更多
基金the National Natural Science Foundation for Young Scientists of China(No.51608306)the Shandong Provincial Natural Science Foundation of China(Nos.ZR2021ME103 and ZR2021QE254)+1 种基金the Shandong Transportation Science and Technology Foundation(Nos.2020-MS1-044,2021B63,and 202060804178)the Young Scholar Future Plan Funds of Shandong University,China。
文摘Subgrade construction is frequently interrupted due to precipitation,soil shortage,and environmental protection.Therefore,increasing the thickness layer is required to reduce construction costs and to allow highways to be placed into service earlier.This paper presents a series of full-scale field experiments evaluating the compaction quality of gravel subgrade with large-thickness layers of 65 cm and 80 cm using heavy vibratory rollers.An improved sand cone method was first proposed and calibrated to investigate the distribution of soil compaction degree across the full subgrade depth.Results showed that dynamic soil stresses caused by the heavy vibratory rollers were 2.4–5.9 times larger than those of traditional rollers,especially at deeper depths,which were large enough to densify the soils to the full depth.A unified empirical formula was proposed to determine the vertical distribution of dynamic soil stresses caused by roller excitation.It was demonstrated that soils were effectively compacted in a uniform fashion with respect to the full depth to 96.0%–97.2%and 94.1%–95.4%for the large-thickness layers of 65 cm and 80 cm within 6 or 7 passes,respectively.Empirically,linear formulae were finally established between soil compaction degree and the subgrade reaction modulus,dynamic modulus of deformation,dynamic deflection,and relative difference of settlement to conveniently evaluate the compaction qualities.It is demonstrated that increasing the thickness layer by means of heavy rollers can significantly reduce the cost and time burdens involved in construction while ensuring overall subgrade quality.
文摘With lots of indoor and outdoor experiments, several key technical issues in construc-tion of the Desert Highway have been solved satisfactorily, on the basis of great achievements ofthe studies in respects of dry compaction on sand base, design parameters, structure combinationof subgrade and pavement, stabilization analysis of sand base strengthened with geotextile and acomplete set of construction techniques. It is the first time the achievements of the study weresuccessfully applied in the Taklimakan Desert where the natural condition is extremely harsh. Ithas been proved that it is economic and reasonable with reliable techniques and simple construc-tion methods. The Desert Highway constructed with the achievements is the first-grade highwayrunning through huge migratory desert for long distance in the world.