Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost ...The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost half bridge (BHB) DC-DC converter modules which are connected in par- allel at the input and output side. This kind of converter is an attractive solution for high power ap- plications. The correlation between input current sharing (ICS) and output current sharing (OCS) of the IPOP converter basic modules is described. Two loop control strategies, consisting of input cur- rent loop and output voltage loop, have been developed to achieve equal ICS and OCS in this present work. The control strategy for the IPOP configuration of boost haft bridge DC-DC converter has been verified for different load conditions (half load and full load), The IPOP system proposed here is comprising of two modules but it can be extended to three or more. The performance of the pro- posed system along with the control strategy is verified by simulation in MATLAB using Simpower tool. Finally the satisfactory simulation results are obtained.展开更多
输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具...输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具备自适应均压能力的混合型模块化ISOP型直流变换器,系统同时具备谐振型DAB的高效率和移相型DAB的灵活控制能力。通过在DAB源端的滞后桥臂中点增设无源的LC谐振支路,该谐振支路与相邻子模块的2个半桥模块共同构成非隔离型双有源半桥,以此来实现系统输入电压的自适应均衡。此外,提出一种低电压穿越(low voltage ride-through,LVRT)方法,在DAB前端连接电压调整模块,模块内部的高频变压器的副边串联电感,当系统输入输出侧发生电压跌落时具备故障穿越的能力,提高系统的暂态可控性。最后,在MATLAB/SIMULINK环境下搭建模型进行验证,可以证明系统的自适应均压性能及故障穿越方法的有效性。展开更多
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
文摘The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost half bridge (BHB) DC-DC converter modules which are connected in par- allel at the input and output side. This kind of converter is an attractive solution for high power ap- plications. The correlation between input current sharing (ICS) and output current sharing (OCS) of the IPOP converter basic modules is described. Two loop control strategies, consisting of input cur- rent loop and output voltage loop, have been developed to achieve equal ICS and OCS in this present work. The control strategy for the IPOP configuration of boost haft bridge DC-DC converter has been verified for different load conditions (half load and full load), The IPOP system proposed here is comprising of two modules but it can be extended to three or more. The performance of the pro- posed system along with the control strategy is verified by simulation in MATLAB using Simpower tool. Finally the satisfactory simulation results are obtained.
文摘输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具备自适应均压能力的混合型模块化ISOP型直流变换器,系统同时具备谐振型DAB的高效率和移相型DAB的灵活控制能力。通过在DAB源端的滞后桥臂中点增设无源的LC谐振支路,该谐振支路与相邻子模块的2个半桥模块共同构成非隔离型双有源半桥,以此来实现系统输入电压的自适应均衡。此外,提出一种低电压穿越(low voltage ride-through,LVRT)方法,在DAB前端连接电压调整模块,模块内部的高频变压器的副边串联电感,当系统输入输出侧发生电压跌落时具备故障穿越的能力,提高系统的暂态可控性。最后,在MATLAB/SIMULINK环境下搭建模型进行验证,可以证明系统的自适应均压性能及故障穿越方法的有效性。