Rice precision hill-drop drilling technique in dry land uses fixed hill spacing to achieve orderly planting of crops and to attain good ventilating and day-lighting effects in rice fields.The technique is also benefic...Rice precision hill-drop drilling technique in dry land uses fixed hill spacing to achieve orderly planting of crops and to attain good ventilating and day-lighting effects in rice fields.The technique is also beneficial in improving root growth and root structure and in increasing lodging resistance.The high-yield record of Xinjiang Production and Construction Corp’s first division for three consecutive years shows that rice precision hill-drop drilling technique in dry land is one of the important directions to developed rice cultivating mechanization technology.To further improve the quality of rice precision hill-drop drilling machine for dry land,a single profiling,electro-hydraulic proportional real-time adjustment of system was developed according to the agronomic requirements.This machine can simultaneously finish various kinds of seedbed leveling,furrowing and seeding operations,as well as soil covering and pressing.Electro-hydraulic proportional speed regulation makes an AMESim simulation test and analyzes the stability and error of hydraulic adjusting planting distance.Bench testing was carried out on the metering device by simultaneously employing high speed photography technology and analyzing the relationship of the high speed of hill distance and seed charge height.Finally,machine trial was completed.The two-year field experiments of Xinjiang Production and Construction Corp showed that when the machine operation speed is 2.8-3.2 km/h,the sowing depth percent of pass is 75%or higher,the qualified rate of row spacing is 80%or more,the pass rate of row spacing is 90%or higher,and the quantity per hill is 75%or higher.This machine met the various indicators of hill sowing quality requirements.展开更多
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for...A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.展开更多
The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of d...The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.展开更多
The identification and recording of drilling conditions are crucial for ensuring drilling safety and efficiency. However, the traditional approach of relying on the subjective determination of drilling masters based o...The identification and recording of drilling conditions are crucial for ensuring drilling safety and efficiency. However, the traditional approach of relying on the subjective determination of drilling masters based on experience formulas is slow and not suitable for rapid drilling. In this paper, we propose a drilling condition classification method based on a neural network model. The model uses an improved Bidirectional Gated Recurrent Unit (BiGRU) combined with an attention mechanism to accurately classify seven common drilling conditions simultaneously, achieving an average accuracy of 91.63%. The model also demonstrates excellent generalization ability, real-time performance, and accuracy, making it suitable for actual production. Additionally, the model has excellent expandability, which enhances its potential for further application.展开更多
High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, ch...Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.展开更多
In this paper, a new forming model of the feed direction burr for drilling process is presented. The feed direction burr formation is experimented and studied. The related theories are analyzed, and the influential ...In this paper, a new forming model of the feed direction burr for drilling process is presented. The feed direction burr formation is experimented and studied. The related theories are analyzed, and the influential factors of the feed direction burrs are pointed out. Furthermore, a certain number of new measures to prevent and decrease the burr in drilling process are advanced.展开更多
An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent...An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.展开更多
This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-...This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-stress rocks having nonuniform physico-mechanical properties. We review the long-term research and development in the specified area of science and technology, including research and development projects implemented at the Institute of Mining, Siberian Branch of the Russian Academy of Sciences. A new modified expression of Oparin’s dimensionless energy criterion of volumetric rock destruction k is introduced. The range of in situ values is determined for the energy criterion of volumetric rock destruction at the optimized energy efficiency of rotary percussive drilling. The temporospatial intervals of geotechnical monitoring are found to control pneumatic drilling energy efficiency at subsoil use objects in Russia. The integrated experimental, theoretical and geotechnical approach to the comprehensive investigation of real-time processes of rock fracture in rotary percussive drilling using the energy concept possesses the necessary geomechanical performance-and-technology potential to create the next level geotechnical monitoring of drilling systems for various purposes, including determination of physico-mechanical properties and the stress-strain analysis of rock mass in full-scale drilling.展开更多
Positioning of screw holes is an important production procedure for steel construction connecting with bolts. In this paper, a new production method is presented, in which the digital camera is used for taking picture...Positioning of screw holes is an important production procedure for steel construction connecting with bolts. In this paper, a new production method is presented, in which the digital camera is used for taking pictures of screw holes and other techniques are advanced. This paper also indicates that the pixels of CCD chip in photogrammetry should be chosen as all geometric units in an image, such as interior elements and all kinds of distortions. The measure can also simplify the camera calibration for determining the size of non-square pixel.展开更多
The aim of this work is to study in detail the drilling process on glass by CO2 laser. The study parameters considered in the present experiments are based on the laser beam power of range (30% - 80% of 25 W) and an e...The aim of this work is to study in detail the drilling process on glass by CO2 laser. The study parameters considered in the present experiments are based on the laser beam power of range (30% - 80% of 25 W) and an exposure time for drilling (2 - 8 s). The measured diameters of holes by optical methods are between [300 - 800 μm]. The results obtained by optical observations suggest that ordinary and mineral glasses cannot withstand to a contact of the laser beam and crack during the formation of the drilling hole. The minimum power and duration of exposure are the optimal parameters for drilling the organic glass, we observe no micro-cracks, and again we see that the edges of the holes have a good surface quality with a high aspect ratio.展开更多
A self-tuning adaptive controller is presented which is used for the adaptive control (AC) of drlling process. The parameters of the controller can be regulated in-processly by on line system identification, so as to ...A self-tuning adaptive controller is presented which is used for the adaptive control (AC) of drlling process. The parameters of the controller can be regulated in-processly by on line system identification, so as to fit the variation of the cutting conditions. This control method has been successfully applied to the adaptive control of drilling process. The experimental results indicate that the controller has the ability to adapt to the variation of the cutting process parameters and is good in performance.展开更多
Mechanized rice direct seeding is a cost-effective and efficient approach for rice cultivation.Recently,the use of rice direct seeding has been increasing rapidly owing to rural labour shortages and continuous increas...Mechanized rice direct seeding is a cost-effective and efficient approach for rice cultivation.Recently,the use of rice direct seeding has been increasing rapidly owing to rural labour shortages and continuous increases in agricultural production costs.This article reviews the research and application progress of mechanized rice direct seeding including direct seeding technologies,precision rice seeding,precision rice seed-metering devices,key supporting agronomy technologies for mechanized rice direct seeding.South China Agricultural University developed precision rice hill-drop drilling(PRHDD)with synchronous furrowing and ridging technology and series machines for paddy that affords remarkable advantages in terms of saving time and labour,higher yield,and higher efficiency.In this approach,pre-germinated seeds are uniformly hill-dropped in the expected positions in puddled soil.It significantly improved the crop growth population and effectively solved the problems of high frequency of disease and pests caused by the irregular distribution of rice seeds with manual broadcasting,and generally reduces seed usage and increases the yield.Therefore,this technology has broad application prospects and great potential for promoting the development of mechanized rice direct seeding in China.展开更多
文摘Rice precision hill-drop drilling technique in dry land uses fixed hill spacing to achieve orderly planting of crops and to attain good ventilating and day-lighting effects in rice fields.The technique is also beneficial in improving root growth and root structure and in increasing lodging resistance.The high-yield record of Xinjiang Production and Construction Corp’s first division for three consecutive years shows that rice precision hill-drop drilling technique in dry land is one of the important directions to developed rice cultivating mechanization technology.To further improve the quality of rice precision hill-drop drilling machine for dry land,a single profiling,electro-hydraulic proportional real-time adjustment of system was developed according to the agronomic requirements.This machine can simultaneously finish various kinds of seedbed leveling,furrowing and seeding operations,as well as soil covering and pressing.Electro-hydraulic proportional speed regulation makes an AMESim simulation test and analyzes the stability and error of hydraulic adjusting planting distance.Bench testing was carried out on the metering device by simultaneously employing high speed photography technology and analyzing the relationship of the high speed of hill distance and seed charge height.Finally,machine trial was completed.The two-year field experiments of Xinjiang Production and Construction Corp showed that when the machine operation speed is 2.8-3.2 km/h,the sowing depth percent of pass is 75%or higher,the qualified rate of row spacing is 80%or more,the pass rate of row spacing is 90%or higher,and the quantity per hill is 75%or higher.This machine met the various indicators of hill sowing quality requirements.
基金conducted under the illu MINEation project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement (No. 869379)supported by the China Scholarship Council (No. 202006370006)
文摘A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.
基金Supported by the "863" Program(2003AA131100-02-06)the National Natural Science Foundation of China(50274061)
文摘The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.
基金supported by open fund(PLN2021-23)of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘The identification and recording of drilling conditions are crucial for ensuring drilling safety and efficiency. However, the traditional approach of relying on the subjective determination of drilling masters based on experience formulas is slow and not suitable for rapid drilling. In this paper, we propose a drilling condition classification method based on a neural network model. The model uses an improved Bidirectional Gated Recurrent Unit (BiGRU) combined with an attention mechanism to accurately classify seven common drilling conditions simultaneously, achieving an average accuracy of 91.63%. The model also demonstrates excellent generalization ability, real-time performance, and accuracy, making it suitable for actual production. Additionally, the model has excellent expandability, which enhances its potential for further application.
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
文摘Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.
文摘In this paper, a new forming model of the feed direction burr for drilling process is presented. The feed direction burr formation is experimented and studied. The related theories are analyzed, and the influential factors of the feed direction burrs are pointed out. Furthermore, a certain number of new measures to prevent and decrease the burr in drilling process are advanced.
基金National Science and Technology Major Project(No.2009ZX04014-023)
文摘An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.
基金supported by the Russian Science Foundation (Grant No. 17-17-01282)RFBR (Grant No. 20-05-00051)。
文摘This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-stress rocks having nonuniform physico-mechanical properties. We review the long-term research and development in the specified area of science and technology, including research and development projects implemented at the Institute of Mining, Siberian Branch of the Russian Academy of Sciences. A new modified expression of Oparin’s dimensionless energy criterion of volumetric rock destruction k is introduced. The range of in situ values is determined for the energy criterion of volumetric rock destruction at the optimized energy efficiency of rotary percussive drilling. The temporospatial intervals of geotechnical monitoring are found to control pneumatic drilling energy efficiency at subsoil use objects in Russia. The integrated experimental, theoretical and geotechnical approach to the comprehensive investigation of real-time processes of rock fracture in rotary percussive drilling using the energy concept possesses the necessary geomechanical performance-and-technology potential to create the next level geotechnical monitoring of drilling systems for various purposes, including determination of physico-mechanical properties and the stress-strain analysis of rock mass in full-scale drilling.
文摘Positioning of screw holes is an important production procedure for steel construction connecting with bolts. In this paper, a new production method is presented, in which the digital camera is used for taking pictures of screw holes and other techniques are advanced. This paper also indicates that the pixels of CCD chip in photogrammetry should be chosen as all geometric units in an image, such as interior elements and all kinds of distortions. The measure can also simplify the camera calibration for determining the size of non-square pixel.
文摘The aim of this work is to study in detail the drilling process on glass by CO2 laser. The study parameters considered in the present experiments are based on the laser beam power of range (30% - 80% of 25 W) and an exposure time for drilling (2 - 8 s). The measured diameters of holes by optical methods are between [300 - 800 μm]. The results obtained by optical observations suggest that ordinary and mineral glasses cannot withstand to a contact of the laser beam and crack during the formation of the drilling hole. The minimum power and duration of exposure are the optimal parameters for drilling the organic glass, we observe no micro-cracks, and again we see that the edges of the holes have a good surface quality with a high aspect ratio.
文摘A self-tuning adaptive controller is presented which is used for the adaptive control (AC) of drlling process. The parameters of the controller can be regulated in-processly by on line system identification, so as to fit the variation of the cutting conditions. This control method has been successfully applied to the adaptive control of drilling process. The experimental results indicate that the controller has the ability to adapt to the variation of the cutting process parameters and is good in performance.
基金The authors wish to acknowledge the funding from National Postdoctoral Program for Innovative Talents(BX201700083)Introduction of the International Advanced Agricultural Science and Technology Program(948 plan)(Project No.2016-X24)+1 种基金Commonweal Project(Project No.201203059)13th Five-year Plan National Key Research Program(Project No.2017YFD0700503-2).
文摘Mechanized rice direct seeding is a cost-effective and efficient approach for rice cultivation.Recently,the use of rice direct seeding has been increasing rapidly owing to rural labour shortages and continuous increases in agricultural production costs.This article reviews the research and application progress of mechanized rice direct seeding including direct seeding technologies,precision rice seeding,precision rice seed-metering devices,key supporting agronomy technologies for mechanized rice direct seeding.South China Agricultural University developed precision rice hill-drop drilling(PRHDD)with synchronous furrowing and ridging technology and series machines for paddy that affords remarkable advantages in terms of saving time and labour,higher yield,and higher efficiency.In this approach,pre-germinated seeds are uniformly hill-dropped in the expected positions in puddled soil.It significantly improved the crop growth population and effectively solved the problems of high frequency of disease and pests caused by the irregular distribution of rice seeds with manual broadcasting,and generally reduces seed usage and increases the yield.Therefore,this technology has broad application prospects and great potential for promoting the development of mechanized rice direct seeding in China.