[Objective] The aim was to study on resource utilization of indigenous plants in roads in order to solve resource shortage of indigenous plant in bioengi- neering. [Method] Based on northwestern loess plateau area, we...[Objective] The aim was to study on resource utilization of indigenous plants in roads in order to solve resource shortage of indigenous plant in bioengi- neering. [Method] Based on northwestern loess plateau area, we conducted research on selection of indigenous plants and survey on the species which could live in adverse condition, mainly by surveying, with frequent tests as a supplement, to make a comprehensive observation and evaluation on plant combinations which are to be extensively applied. [Result] The research indicated that in central dividing strips, four arbors, including Platycladus orientalis (Linn.)Franco, Sabina chinensis, Sabinachinen- sis(Linn.)Ant., and Ulmus purnila L., and nine frutices, including Lycium chinense, Tamarix austromongolica, Rosa xanthina Lindl., Forsythia suspense, Atriplex canescens, Amygdalus triloba, Hippophae rharnnoides Linn., Arnorpha fruticosa L., and Syzygium aromaticum could be planted. In addition, Gleditsia sinensis Lain, Robinia pseudoacacia L, Elaeagnus angustifolia L., Rhus typhina, Salix babylonica, Salixmatsudana and Fraxinus chinensis, tall and strong, are suitable to be planted as border trees, presenting a good vision. Frutices, limited by height, are usually with more branches, which will provide a good landscape if grown with tall plants. Prunus dacidiana and Ulmus pumila L., prone to be damaged by insects, should be planted with other species to stop the infestation in space. [Conclusion] The research laid foundation for selection of indigenous plants in roads, providing references for resource shortage of indigenous plant for bioengineedng.展开更多
Based on the investigation and analysis of characteristics of precipitation, natural environment, socio-economic factors and soil erosion, this paper indicates that the precipitation is the main driving force for the ...Based on the investigation and analysis of characteristics of precipitation, natural environment, socio-economic factors and soil erosion, this paper indicates that the precipitation is the main driving force for the soil erosion in the sediment-rich area, its variability determines the characteristics of soil and water loss; the natural conditions such as the drainage systems, geological and topographic features, the composition of soil and land surface materials, vegetation and climate determine the seriousness of soil and water loss; irrational socio-economic activities of human beings usually accelerated soil and water loss; meanwhile, the low preservation rate and inferiority of soil and water conservation measures made it impossible to make rapid progress on soil and water loss control. Furthermore, the characteristics of erosion environment endowed this area with more sediment that is the main reason for the flooding disasters by the Yellow River. Therefore, more emphasis should be placed on the enhancement of soil and water conservation. The soil loss prediction models will provide scientific basis for the planning of soil and water conservation, the designing of soil and water conservation measures and the valuation of effects of soil and water loss control. According to the analysis of the previous studies on soil loss prediction, and the water-sediment variation features, it is thought that study on soil loss prediction under various rainfall conditions and soil-water conservation measures should be carried out.展开更多
Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in ord...Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.展开更多
A comprehensive analysis was conducted on the current situation as well as historic succession processor agriculture and ecological conditions in Northwest China, in particular in the Loess Plateau, by means of a inte...A comprehensive analysis was conducted on the current situation as well as historic succession processor agriculture and ecological conditions in Northwest China, in particular in the Loess Plateau, by means of a inter-disciplinary approach of ecology, agro-geohistory, and agronomy. It was concluded that the fundamental causes responsible for the ecological deterioration, signed by the poor agro-productivity and serious soil erosion, had been the extensive cropping system by ever-increasing reclamation on semi-drought slope land, where initiated a natural vegetation of brushy grasses with sparse trees, thus suitable only for animal husbandry. Based on an identification of specific actual status of China, several countermeasures of correctly dealing with the relationship between agricultural development and the ecological restoration and reconstruction were proposed, including to get breakthrough first in the transection area by means of the rational use of resources and the raising of agro-system productivity, to promoting 'water conservancy-type ecological agriculture' through the radical shift of traditional production pattern, and the adoption of a policy of proper degree of grain self-reliance, as well as to construct livestock industry base in Northwest China.展开更多
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infi...In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.展开更多
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub l...Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.展开更多
The Loess Plateau, covered with thick loess, lies in the middle reaches of the YellowRiver to the west of the Taihangshan Mountains, east of the Wuqiao Mountains south ofYinshan Mountains and north of the Qinling Moun...The Loess Plateau, covered with thick loess, lies in the middle reaches of the YellowRiver to the west of the Taihangshan Mountains, east of the Wuqiao Mountains south ofYinshan Mountains and north of the Qinling Mountains with a total area of 56×10~4km^2.The plateau is 1000--2500m above sea level and has loess as thick as 100--200 metres, be-展开更多
The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in ...The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in the loess hill slope are selected to study the effect of land use structure on the distribution of soil nutrients. From hill bottom to hill top, the patterns of land use types are:, grassland-slope farmland-forest, slope farmland-grassland-forest, terrace-grassland-forest and slope farmland-forest-grassland. By measuring the contents of the total N, total P, available N, available P and organic matter of soils, the results show that the land use structure types of slope farmland-grassland-forest and terrace-grassland-forest have a better capacity to maintain the soil nutrients.展开更多
Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispen...Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispensable task. Along with the increase in the size of the study area, the derived spectra are becoming more and more alike, such that their dif- ferences can be ignored in favor of a standard. Subsequently, the test size is defined as the Slope Spectrum Critical Area (SSCA). SSCA is not only the foundation of the slope spectrum calculation but also, to some extent, a reflection of geomorphological development of loess relief. High resolution DEMs are important in extracting the slope spectrum. A set of 48 DEMs with different landform areas of the Loess Plateau in northern Shaanxi province was selected for the experiment. The spatial distribution of SSCA is investigated with a geo-statistical analysis method, resulting in values ranging from 6.18 km^2 to 35.1 km^2. Primary experimental results show that the spatial distribution of SSCA is correlated with the spatial distribution of the soil erosion intensity, to a certain extent reflecting the terrain complexity. The critical area of the slope spectrum presents a spatial variation trend of weak-strong-weak from north to south. Four terrain parameters, gully density, slope skewness, terrain driving force (Td) and slope of slope (SOS), were chosen as indicators. There exists a good exponential function relationship between SSCA and gully density, terrain driving force (Td) and SOS and a loga- rithmic function relationship between SSCA and slope skewness. Slope skewness increases, and gully density, terrain driving force and SOS decrease with increasing SSCA. SSCA can be utilized as a discriminating factor to identify loess landforms, in that spatial distributions of SSCA and the evolution of loess landforms are correlative. Following the evolution of a loess landform from tableland to gully-hilly region, this also proves that SSCA can represent the development degree of local landforms. The critical stable regions of the Loess Plateau represent the degree of development of loess landforms. Its chief significance is that the per- ception of stable areas can be used to determine the minimal geographical unit.展开更多
[目的]为比较地形变化监测算法在黄土高原砒砂岩区的适用性。[方法]以皇甫川流域特拉沟一支沟为研究对象,采用无人机摄影测量技术获取2022年7月至2023年3月影像,结合SfM技术生成三维点云数据,比较分析[digital elevation model of diffe...[目的]为比较地形变化监测算法在黄土高原砒砂岩区的适用性。[方法]以皇甫川流域特拉沟一支沟为研究对象,采用无人机摄影测量技术获取2022年7月至2023年3月影像,结合SfM技术生成三维点云数据,比较分析[digital elevation model of difference(DoD)、cloud to cloud(C2C)、cloud to mesh(C2M)、multiscale model to model cloud comparison(M3C2)]等4种算法的侵蚀产沙监测精度,并分析点云密度变化对各方法精度的影响。[结果](1)4种常用算法在空间上都能监测到大幅度地表变化。其中,以M3C2算法的结果最优,线性拟合结果最好(R^(2)=0.953,p<0.01),且综合误差最小(MAE=0.0161 m,MRE=3.37%,RMSE=0.0194 m),C2M算法其次,DoD算法再次,而C2C算法结果最差。(2)通过比较,DoD算法仅适用于平坦区域的快速检测,坡度陡峭的区域监测侵蚀沉积量存在高估的现象。(3)M3C2和C2C算法对点云密度变化敏感,而C2M和DoD受点云密度变化影响较小。[结论]研究结果可为黄土高原砒砂岩地区基于UAV-SfM的侵蚀产沙监测方法的选择提供参考。展开更多
文摘[Objective] The aim was to study on resource utilization of indigenous plants in roads in order to solve resource shortage of indigenous plant in bioengi- neering. [Method] Based on northwestern loess plateau area, we conducted research on selection of indigenous plants and survey on the species which could live in adverse condition, mainly by surveying, with frequent tests as a supplement, to make a comprehensive observation and evaluation on plant combinations which are to be extensively applied. [Result] The research indicated that in central dividing strips, four arbors, including Platycladus orientalis (Linn.)Franco, Sabina chinensis, Sabinachinen- sis(Linn.)Ant., and Ulmus purnila L., and nine frutices, including Lycium chinense, Tamarix austromongolica, Rosa xanthina Lindl., Forsythia suspense, Atriplex canescens, Amygdalus triloba, Hippophae rharnnoides Linn., Arnorpha fruticosa L., and Syzygium aromaticum could be planted. In addition, Gleditsia sinensis Lain, Robinia pseudoacacia L, Elaeagnus angustifolia L., Rhus typhina, Salix babylonica, Salixmatsudana and Fraxinus chinensis, tall and strong, are suitable to be planted as border trees, presenting a good vision. Frutices, limited by height, are usually with more branches, which will provide a good landscape if grown with tall plants. Prunus dacidiana and Ulmus pumila L., prone to be damaged by insects, should be planted with other species to stop the infestation in space. [Conclusion] The research laid foundation for selection of indigenous plants in roads, providing references for resource shortage of indigenous plant for bioengineedng.
基金Knowledge Innovation Project of CAS, No. KZCX1-10-04
文摘Based on the investigation and analysis of characteristics of precipitation, natural environment, socio-economic factors and soil erosion, this paper indicates that the precipitation is the main driving force for the soil erosion in the sediment-rich area, its variability determines the characteristics of soil and water loss; the natural conditions such as the drainage systems, geological and topographic features, the composition of soil and land surface materials, vegetation and climate determine the seriousness of soil and water loss; irrational socio-economic activities of human beings usually accelerated soil and water loss; meanwhile, the low preservation rate and inferiority of soil and water conservation measures made it impossible to make rapid progress on soil and water loss control. Furthermore, the characteristics of erosion environment endowed this area with more sediment that is the main reason for the flooding disasters by the Yellow River. Therefore, more emphasis should be placed on the enhancement of soil and water conservation. The soil loss prediction models will provide scientific basis for the planning of soil and water conservation, the designing of soil and water conservation measures and the valuation of effects of soil and water loss control. According to the analysis of the previous studies on soil loss prediction, and the water-sediment variation features, it is thought that study on soil loss prediction under various rainfall conditions and soil-water conservation measures should be carried out.
基金funded by the National Natural Science Foundation of China (42002283, 42062019)the Science and Technology Plan Project of Qinghai Province,China (2022-ZJ-Y08)the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0905, 2019QZKK0805)
文摘Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.
基金the Chinese Ministry of Science and Technology(No.2000018600).
文摘A comprehensive analysis was conducted on the current situation as well as historic succession processor agriculture and ecological conditions in Northwest China, in particular in the Loess Plateau, by means of a inter-disciplinary approach of ecology, agro-geohistory, and agronomy. It was concluded that the fundamental causes responsible for the ecological deterioration, signed by the poor agro-productivity and serious soil erosion, had been the extensive cropping system by ever-increasing reclamation on semi-drought slope land, where initiated a natural vegetation of brushy grasses with sparse trees, thus suitable only for animal husbandry. Based on an identification of specific actual status of China, several countermeasures of correctly dealing with the relationship between agricultural development and the ecological restoration and reconstruction were proposed, including to get breakthrough first in the transection area by means of the rational use of resources and the raising of agro-system productivity, to promoting 'water conservancy-type ecological agriculture' through the radical shift of traditional production pattern, and the adoption of a policy of proper degree of grain self-reliance, as well as to construct livestock industry base in Northwest China.
基金This study was funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(1212010741003,1212011220224,and 121201011000150022)China Geological Survey(DD20189220,DD20211317)+2 种基金the public welfare scientific research project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)the project of 2015 Natural Science Basic Research Plan of Shaanxi Province of China(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities of China(an open-end fund)(310829161128).
文摘In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.
文摘Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
文摘The Loess Plateau, covered with thick loess, lies in the middle reaches of the YellowRiver to the west of the Taihangshan Mountains, east of the Wuqiao Mountains south ofYinshan Mountains and north of the Qinling Mountains with a total area of 56×10~4km^2.The plateau is 1000--2500m above sea level and has loess as thick as 100--200 metres, be-
文摘The irrational land use is one of the main reasons for the soil erosion and nutrient loss in the loess hilly area of China. In this project, 4 types of typical land use structure of sustain ment for about 15 years in the loess hill slope are selected to study the effect of land use structure on the distribution of soil nutrients. From hill bottom to hill top, the patterns of land use types are:, grassland-slope farmland-forest, slope farmland-grassland-forest, terrace-grassland-forest and slope farmland-forest-grassland. By measuring the contents of the total N, total P, available N, available P and organic matter of soils, the results show that the land use structure types of slope farmland-grassland-forest and terrace-grassland-forest have a better capacity to maintain the soil nutrients.
基金Foundation: National Natural Science Foundation of China, No.41171299, No.41171320, No.41401237
文摘Slope spectrum has been proved to be a significant methodology in revealing geomorphological features in the study of Chinese loess terrain. The determination of critical areas in deriving slope spectra is an indispensable task. Along with the increase in the size of the study area, the derived spectra are becoming more and more alike, such that their dif- ferences can be ignored in favor of a standard. Subsequently, the test size is defined as the Slope Spectrum Critical Area (SSCA). SSCA is not only the foundation of the slope spectrum calculation but also, to some extent, a reflection of geomorphological development of loess relief. High resolution DEMs are important in extracting the slope spectrum. A set of 48 DEMs with different landform areas of the Loess Plateau in northern Shaanxi province was selected for the experiment. The spatial distribution of SSCA is investigated with a geo-statistical analysis method, resulting in values ranging from 6.18 km^2 to 35.1 km^2. Primary experimental results show that the spatial distribution of SSCA is correlated with the spatial distribution of the soil erosion intensity, to a certain extent reflecting the terrain complexity. The critical area of the slope spectrum presents a spatial variation trend of weak-strong-weak from north to south. Four terrain parameters, gully density, slope skewness, terrain driving force (Td) and slope of slope (SOS), were chosen as indicators. There exists a good exponential function relationship between SSCA and gully density, terrain driving force (Td) and SOS and a loga- rithmic function relationship between SSCA and slope skewness. Slope skewness increases, and gully density, terrain driving force and SOS decrease with increasing SSCA. SSCA can be utilized as a discriminating factor to identify loess landforms, in that spatial distributions of SSCA and the evolution of loess landforms are correlative. Following the evolution of a loess landform from tableland to gully-hilly region, this also proves that SSCA can represent the development degree of local landforms. The critical stable regions of the Loess Plateau represent the degree of development of loess landforms. Its chief significance is that the per- ception of stable areas can be used to determine the minimal geographical unit.
文摘[目的]为比较地形变化监测算法在黄土高原砒砂岩区的适用性。[方法]以皇甫川流域特拉沟一支沟为研究对象,采用无人机摄影测量技术获取2022年7月至2023年3月影像,结合SfM技术生成三维点云数据,比较分析[digital elevation model of difference(DoD)、cloud to cloud(C2C)、cloud to mesh(C2M)、multiscale model to model cloud comparison(M3C2)]等4种算法的侵蚀产沙监测精度,并分析点云密度变化对各方法精度的影响。[结果](1)4种常用算法在空间上都能监测到大幅度地表变化。其中,以M3C2算法的结果最优,线性拟合结果最好(R^(2)=0.953,p<0.01),且综合误差最小(MAE=0.0161 m,MRE=3.37%,RMSE=0.0194 m),C2M算法其次,DoD算法再次,而C2C算法结果最差。(2)通过比较,DoD算法仅适用于平坦区域的快速检测,坡度陡峭的区域监测侵蚀沉积量存在高估的现象。(3)M3C2和C2C算法对点云密度变化敏感,而C2M和DoD受点云密度变化影响较小。[结论]研究结果可为黄土高原砒砂岩地区基于UAV-SfM的侵蚀产沙监测方法的选择提供参考。