In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera...In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.展开更多
Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using sa...Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using satellite data. The recent availability of Himawari-8 data has considerably strengthened the possibility of better cloud classification owing to its enhanced multi-band configuration as well as high temporal resolution. In SWA, cloud classification is attained by considering the spatial distributions of the brightness temperature (BT) and brightness temperature difference (BTD) of thermal infrared bands. In this study, we compare unsupervised classification results of SWA using the band pair of band 13 and 15 (SWA13-15, 10 and 12 μm bands), versus that of band 15 and 16 (SWA15-16, 12 and 13 μm bands) over the Japan area. Different threshold values of BT and BTD are chosen in winter and summer seasons to categorize cloud regions into nine different types. The accuracy of classification is verified by using the cloud-top height information derived from the data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For this purpose, six different paths of the space-borne lidar are selected in both summer and winter seasons, on the condition that the time span of overpass falls within the time ranges between 01:00 and 05:00 UTC, which corresponds to the local time around noon. The result of verification indicates that the classification based on SWA13-15 can detect more cloud types as compared with that based on SWA15-16 in both summer and winter seasons, though the latter combination is useful for delineating cumulonimbus underneath dense cirrus展开更多
The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological conseque...The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological consequences.Therefore,it is crucial to have high-temporal-resolution and seamless hourly estimating and monitoring of LST for a better understanding of climate change on the TP.Here,we employed Himawari-8 satellite,Digital Elevation Model(DEM),ERA5 reanalysis and meteorological station observations data to develop a new LightGBM framework(called Geo-LightGBM)for estimating LST on the TP,and then analyzed the spatiotemporal variations of those LST.Geo-LightGBM demonstrated excellent LST estimation accuracy,with an R2(coefficient of determination)of 0.971,RMSE(root-mean-square error)of 2.479℃,and MAE(mean absolute error)of 1.510℃.The estimated LST values for the year 2020 agreed well with observed values,with remarkable differences in hourly LST variations.Meanwhile,the estimated LST was more accurate than that from FY-4A.Spatially,there were two high LST centers,located in the Yarlung Zangbo River Basin and the Qaidam Basin,and a low LST center located in the central TP.The SHAP(SHapley Additive exPlanations)and correlation analyses revealed DSCS(the mean ground downward shortwave radiation under clear-sky conditions)to be the most importantly input variable for estimating LST.Spatiotemporal dummy variables(e.g.,longitude,latitude,DEM)were also found to be crucial for model accuracy improvement.Our findings indicate the potential for constructing a high-precision and seamless 24-h LST real-time retrieval and monitoring platform for the TP by combining satellite and China's independently developed CLDAS(China Land Data Assimilation System)data in future.展开更多
This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 mill...This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>展开更多
As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-...As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight.The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission.This article has presented the briefs of the scientific achievements of these space experiments,the composition and performance of the Microgravity Experimental System(MES) and the general picture of the overall flight mission,respectively.展开更多
基金Supported by National Natural Science Foundation of China(41805080)Natural Science Foundation of Anhui Province,China(1708085QD89)+1 种基金Key Research and Development Program Projects of Anhui Province,China(201904a07020099)Open Foundation Project Shenyang Institute of Atmospheric Environment,China Meteorological Administration(2016SYIAE14)
文摘In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.
文摘Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using satellite data. The recent availability of Himawari-8 data has considerably strengthened the possibility of better cloud classification owing to its enhanced multi-band configuration as well as high temporal resolution. In SWA, cloud classification is attained by considering the spatial distributions of the brightness temperature (BT) and brightness temperature difference (BTD) of thermal infrared bands. In this study, we compare unsupervised classification results of SWA using the band pair of band 13 and 15 (SWA13-15, 10 and 12 μm bands), versus that of band 15 and 16 (SWA15-16, 12 and 13 μm bands) over the Japan area. Different threshold values of BT and BTD are chosen in winter and summer seasons to categorize cloud regions into nine different types. The accuracy of classification is verified by using the cloud-top height information derived from the data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For this purpose, six different paths of the space-borne lidar are selected in both summer and winter seasons, on the condition that the time span of overpass falls within the time ranges between 01:00 and 05:00 UTC, which corresponds to the local time around noon. The result of verification indicates that the classification based on SWA13-15 can detect more cloud types as compared with that based on SWA15-16 in both summer and winter seasons, though the latter combination is useful for delineating cumulonimbus underneath dense cirrus
基金This work was supported by the National Natural Science Foundation of China(42306270 and 42122047)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2023Y004,2023Z004 and 2023Z022).
文摘The Tibetan Plateau(TP)is highly sensitive to even minor fluctuations in land surface temperature(LST),which can result in permafrost melting and degradation of alpine grasslands,leading to serious ecological consequences.Therefore,it is crucial to have high-temporal-resolution and seamless hourly estimating and monitoring of LST for a better understanding of climate change on the TP.Here,we employed Himawari-8 satellite,Digital Elevation Model(DEM),ERA5 reanalysis and meteorological station observations data to develop a new LightGBM framework(called Geo-LightGBM)for estimating LST on the TP,and then analyzed the spatiotemporal variations of those LST.Geo-LightGBM demonstrated excellent LST estimation accuracy,with an R2(coefficient of determination)of 0.971,RMSE(root-mean-square error)of 2.479℃,and MAE(mean absolute error)of 1.510℃.The estimated LST values for the year 2020 agreed well with observed values,with remarkable differences in hourly LST variations.Meanwhile,the estimated LST was more accurate than that from FY-4A.Spatially,there were two high LST centers,located in the Yarlung Zangbo River Basin and the Qaidam Basin,and a low LST center located in the central TP.The SHAP(SHapley Additive exPlanations)and correlation analyses revealed DSCS(the mean ground downward shortwave radiation under clear-sky conditions)to be the most importantly input variable for estimating LST.Spatiotemporal dummy variables(e.g.,longitude,latitude,DEM)were also found to be crucial for model accuracy improvement.Our findings indicate the potential for constructing a high-precision and seamless 24-h LST real-time retrieval and monitoring platform for the TP by combining satellite and China's independently developed CLDAS(China Land Data Assimilation System)data in future.
文摘This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>
基金The space experiments are financially supported by the Knowledge Innovation Program of Chinese Academy of Sciences and Chinese National Space AdministrationChina Academy of Space Technology (CAST) and Ministry of Agriculture of the People's Republic of China for their contributions to the accomplishment of the project
文摘As scientific experiment payloads,microgravity experiments of fluid physics,life science,combustion science,physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight.The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission.This article has presented the briefs of the scientific achievements of these space experiments,the composition and performance of the Microgravity Experimental System(MES) and the general picture of the overall flight mission,respectively.