Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completel...Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper, we analyzed the rotation rigidity of a corner-filleted straight beam flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical results. Through the graph of the flexible hinge parameters and its performance, an analysis of changes of parameters on the performance of a corner-filleted flexible hinge was carried out. The key manufacture parameters that affect the performance of a corner-filleted flexure hinge the most and rules of design are given, which can provide directions of design precision for the flexure hinge.展开更多
The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-fillete...The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-filleted flexure hinge flexibility formula by methods of symmetry transformation and coordinates translation. The correctness of this formula is validated on the basis of the finite element method and under the premise that the effects of shear stress are taken into consideration. Then a micro-rotation compliant mechanism is designed in accordance with the corner-filleted flexure hinge,and the deduction and analysis of its working moment/rigidity are conducted. Moreover,this theoretical formula is proved to be accurate and reliable through the finite element analysis and the experimental verification,based on which the structural design and optimization can be made on the rotating part of a micro adjustment device. The results illustrate that designing and optimizing the structures by the analysis model is convenient and reliable so that complicated 3D modeling and finite element analysis are not needed.展开更多
The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequen...The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.展开更多
NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of fre...NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.展开更多
文摘Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper, we analyzed the rotation rigidity of a corner-filleted straight beam flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical results. Through the graph of the flexible hinge parameters and its performance, an analysis of changes of parameters on the performance of a corner-filleted flexible hinge was carried out. The key manufacture parameters that affect the performance of a corner-filleted flexure hinge the most and rules of design are given, which can provide directions of design precision for the flexure hinge.
基金Sponsored by the National High-tech R&D Progrom(Grant No.2011AA12A103)the Equipment Development Fund(Grant No.08001SA050)
文摘The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-filleted flexure hinge flexibility formula by methods of symmetry transformation and coordinates translation. The correctness of this formula is validated on the basis of the finite element method and under the premise that the effects of shear stress are taken into consideration. Then a micro-rotation compliant mechanism is designed in accordance with the corner-filleted flexure hinge,and the deduction and analysis of its working moment/rigidity are conducted. Moreover,this theoretical formula is proved to be accurate and reliable through the finite element analysis and the experimental verification,based on which the structural design and optimization can be made on the rotating part of a micro adjustment device. The results illustrate that designing and optimizing the structures by the analysis model is convenient and reliable so that complicated 3D modeling and finite element analysis are not needed.
文摘The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.
文摘NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.