The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and erro...The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and error experiment to obtain the desirable processing technology.The EDEM simulation of the spindle barrel finishing can provide effective help for the process design,however,the difference between the simulation and experiment is closely related to the selection of the contact model during simulation.In this paper,simulations and experiments are conducted based on the identical apparatus and conditions to facilitate the comparison and validation between each other.Based on the Hertz contact theory,the effect of the material properties of contact objects and the relative position of the workpiece on the contact force is qualified.The expression of the correlation coefficient of the contact model is deduced.Then the formula for calculating the contact force between the barrel finishing abrasive and the workpiece that includes influence coefficient of the material properties and the relative positions is established.Finally,the contact force calculation formula is verified by changing the rotating speed.The result shows that the material correction coefficient ranges from 1.41 to 2.38,which is inversely related to the equivalent modulus E.The position correction coefficient ranges from 2.0 to 2.3.The relative error value between the calculation result and the experimental test result is from 0.58%to 14.07%.This research lay a theoretical foundation for the correction theory of the core elements of the spindle barrel finishing process.展开更多
A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method,...A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.展开更多
Sideways fall has been identified as the most critical situation for the elderly to develop hip fractures. The impact force onto the greater trochanter is the key factor for predicting fracture risk. For the elderly, ...Sideways fall has been identified as the most critical situation for the elderly to develop hip fractures. The impact force onto the greater trochanter is the key factor for predicting fracture risk. For the elderly, the impact force can only be determined by dynamics simulations, and the dynamics model must be first validated by experiments before it can be applied in clinic. In this study, subject-specific whole-body dynamics models constructed from dual energy X-ray absorptiometry (DXA) images of the subjects were validated by controlled and protected fall tests using young volunteers. The validation results suggested that subject-specific dynamics model is much more accurate in predicting impact force induced in sideways fall than conventional non-subject-specific dynamics model. Therefore, subject-specific dynamics model can be applied in clinic to improve the accuracy of assessing hip fracture risk.展开更多
A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes...A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.展开更多
基金Supported by Program National Natural Science Foundation of China(Grant Nos.51875389,51975399,52075362)Key Program of Natural Science Foundation of Shanxi Province of China(Grant No.201801D111002)Scientific and Technological Innovation Project for Excellent Talents in Shanxi Province of China(Grant No.201805D211031).
文摘The spindle barrel finishing is commonly used to improve the surface integrity of the important parts of the high-end equipment while it is difficult to provide enough test artifacts for the traditional trial and error experiment to obtain the desirable processing technology.The EDEM simulation of the spindle barrel finishing can provide effective help for the process design,however,the difference between the simulation and experiment is closely related to the selection of the contact model during simulation.In this paper,simulations and experiments are conducted based on the identical apparatus and conditions to facilitate the comparison and validation between each other.Based on the Hertz contact theory,the effect of the material properties of contact objects and the relative position of the workpiece on the contact force is qualified.The expression of the correlation coefficient of the contact model is deduced.Then the formula for calculating the contact force between the barrel finishing abrasive and the workpiece that includes influence coefficient of the material properties and the relative positions is established.Finally,the contact force calculation formula is verified by changing the rotating speed.The result shows that the material correction coefficient ranges from 1.41 to 2.38,which is inversely related to the equivalent modulus E.The position correction coefficient ranges from 2.0 to 2.3.The relative error value between the calculation result and the experimental test result is from 0.58%to 14.07%.This research lay a theoretical foundation for the correction theory of the core elements of the spindle barrel finishing process.
基金The project supported by the National Natural Science Foundation of China(10532020)
文摘A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.
文摘Sideways fall has been identified as the most critical situation for the elderly to develop hip fractures. The impact force onto the greater trochanter is the key factor for predicting fracture risk. For the elderly, the impact force can only be determined by dynamics simulations, and the dynamics model must be first validated by experiments before it can be applied in clinic. In this study, subject-specific whole-body dynamics models constructed from dual energy X-ray absorptiometry (DXA) images of the subjects were validated by controlled and protected fall tests using young volunteers. The validation results suggested that subject-specific dynamics model is much more accurate in predicting impact force induced in sideways fall than conventional non-subject-specific dynamics model. Therefore, subject-specific dynamics model can be applied in clinic to improve the accuracy of assessing hip fracture risk.
基金Project(2011CB706800)supported by the National Basic Research Program of China
文摘A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.