BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release...BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release of some cytokines and growth factors, while electro-acupuncture may have multi-level, multi-channel and multi-target protective and interventional effects on ischemic brain injury. OBJECTIVE: To observe the effects of electro-acupuncture on STAT3 expression and nuclear translocation in hippocampal CA1 region of rat models of brain ischemia/reperfusion. DESIGN: Randomized and controlled observation. SETTING: Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine; Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Seventy-two healthy SD rats, of clean degree and either gender, weighing (200±20) g, were provided by the Experimental Animal Center of Hubei College of Traditional Chinese Medicine. STAT3 monoclonal antibody was purchased from Santa Cruz Company, USA, and G-6805 electro-acupuncture instrument was purchased from Shanghai Medical Electronic Instruments Factory. METHODS: This experiment was carried out in the comprehensive laboratory of Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine between September 2005 and February 2006. Seventy-two rats were randomly divided into 4 groups: ① control group(n =6): Untouched. ② Sham-operation group (n =18): Artery was isolated, but without inserting thread bolt.③ Model group (n =24): Rat models of local brain ischemia/reperfusion were established with modified suture occlusion. ④Electro-acupuncture group (n =24): Dazhui and bilateral Neiguan points were selected for electro-acupuncture treatment. No. 28 acupuncture needle of 3.33 cm was used in the treatment. A G-6085 electro-acupuncture instrument with continuous wave, frequency of 120 times/min, intensity of 1 mA, 30 min/time, was used. Acupuncture was conducted firstly at ischemia/reperfusion 3 hours, then once every 12 hours. STAT3 positive nuclear translocation in hippocampal CA1 region of rats was observed with immunohistochemical method at 24, 48 and 72 hours after brain ishcemia/reperfusion, and then STAT3 positive cells were counted. MAIN OUTCOME MEASURES: STAT3 positive cells and nuclear translocation in hippocampal CA1 region of rats in each group. RESULTS: All the 72 rats were involved in the result analysis. ①In the control group and sham-operation group, STAT3 positive cells with light cytoplasm and nucleus were decreased , and nuclear translocation was not found. ② In the model group, STAT3 positive cells were mostly found in the cytoplasm of the hippocampal CA1 region at the ischemic side of rats after ischemia/reperfusion 24 hours. They were significantly more than those in the sham-operation group and control group [(18.00±2.68), (9.00±1.35), (8.00±1.22) cells/ mm2, P < 0.01], but cells with nuclear reaction were fewer; At ischemia/reperfusion 48 and 72 hours, STAT3 positive cells were increased, and they were significantly more than those of sham-operation group [(25.00±3.23), (35.00±3.52) cells/mm2, (13.00±1.93), (12.00±1.24) cells/mm2, P < 0.01]. Positive cells with nuclear reaction were found dark-stained. ③At ischemia/reperfusion 24, 48 and 72 hours, STAT3 positive cells were strongly expressed in hippocampal CA1 region at ischemic side of rats of electro-acupuncture group, and they were significantly more than those of model group [(25±3.52), (50±6.31), (75±8.09) cells/mm2, P < 0.01]. STAT3 positive cells were gradually enhanced with time, and considerable STAT3 nuclear positive reaction cells were found. CONCLUSION: Electro-acupuncture can activate STAT3 protein expression in hippocampal tissue of rats with local brain ischemia/reperfusion, promote STAT3 nuclear translocation and function its neuroprotective effect.展开更多
Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as th...Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as the hippocampus,and many of these patients being refractory to treatment with anti-epileptic drugs.Temporal lobe epilepsy is the most common childhood neurological disorder and,compared with adults,the symptoms are greatly affected by age and brain development.Diagnosis of temporal lobe epilepsy relies on clinical examination,patient history,electroencephalographic recordings,and brain imaging.Misdiagnosis or delay in diagnosis is common.A molecular biomarker that could distinguish epilepsy from healthy subjects and other neurological conditions would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated.Among possible biomarkers of pathological changes as well as potential therapeutic targets in the epileptic brain are micro RNAs.Most of the recent studies had performed micro RNA profiling in body fluids such as blood plasma and blood serum and brain tissues such as temporal cortex tissue and hippocampal tissue.A large number of micro RNAs were dysregulated when compared to healthy controls and with some overlap between individual studies that could serve as potential biomarkers.For example,in adults with temporal lobe epilepsy,possible biomarkers are miR-199a-3p in blood plasma and miR-142-5p in blood plasma and blood serum.In adults with mesial temporal lobe epilepsy,possible biomarkers are miR-153 in blood plasma and miR-145-3p in blood serum.However,in many of the studies involving patients who receive one or several anti-epileptic drugs,the influence of these on micro RNA expression in body fluids and brain tissues is largely unknown.Further studies are warranted with children with temporal lobe epilepsy and consideration should be given to utilizing mouse or rat and non-human primate models of temporal lobe epilepsy.The animal models could be used to confirm micro RNA findings in human patients and to test the effects of targeting specific micro RNAs on disease progression and behavior.展开更多
OBJECTIVE:To investigate the efficacy of scalp acupuncture Yikang therapy on Baihui(GV20),Sishencong(EX-HN1),Zhisanzhen,Niesanzhen,on neurobehavior in young rats with cerebral palsy based on Notch signaling pathway.ME...OBJECTIVE:To investigate the efficacy of scalp acupuncture Yikang therapy on Baihui(GV20),Sishencong(EX-HN1),Zhisanzhen,Niesanzhen,on neurobehavior in young rats with cerebral palsy based on Notch signaling pathway.METHODS:Thirty 7-day-old rats were randomly divided into sham,model and acupuncture,10 rats in each group.The cerebral palsy model was established by the accepted modeling method,the acupuncture group selected"Baihui(GV20)","Sishencong(EX-HN1)","Zhisanzhen"and"Niesanzhen"for intervention 24 h after the model was made.The body masses were recorded before and after the treatment,respectively.After the intervention,the rats were subjected to suspension experiment,slope experiment,tactile stimulation experiment and Morris water maze experiment.After the end of the experiment,the morphological changes of hippocampal histology were observed by hematoxylineosin(HE)staining under light microscope,and the expression of Notch1,Notch3 and Hes5 were detected by Western blot and quantitative real-time polymerase chain reaction(PCR).RESULTS:The changes in body mass of the rats in each group were different;in behavioral experiments,compared with the sham,the suspension time of the model was shortened,the slope experiment,tactile stimulation experiment,and escape latency time were prolonged,and the number of platform crossing was reduced in the model,compared with the model,the suspension time of the acupuncture was prolonged,the slope experiment,tactile stimulation experiment,and escape latency time were shortened,and the number of platform crossing times was increased;HE staining showed severe hippocampal damage in the model and reduced hippocampal damage in the acupuncture.Western Blot and real-time fluorescence quantitative PCR showed that the expression of Notch1,Notch3 and Hes5 were increased in the model and the expression of Notch1,Notch3,Hes5 in acupuncture were decreased.CONCLUSIONS:Scalp acupuncture Yikang therapy may improve neurobehavior and reduce brain injury in rats with cerebral palsy by downregulating the expression of Notch1,Notch3,and Hes5.展开更多
Objective:Epilepsy is a prevalent neurological condition,and NF-kB,TLR-4,and MyD88 are significant contributors to its development.Murine nerve growth factor(NGF)and monosialotetrahexosylganlioside sodium for injectio...Objective:Epilepsy is a prevalent neurological condition,and NF-kB,TLR-4,and MyD88 are significant contributors to its development.Murine nerve growth factor(NGF)and monosialotetrahexosylganlioside sodium for injection(MSI)are essential neurotrophic medications,yet their regulatory mechanism in the pathogenesis of epilepsy remains uncertain.The aim of this research was to examine the impacts of NGF and MSI on nuclear factor-kB(NF-kB)p65,toll-like receptor 4(TLR-4),and myeloid differentiation primary response gene 88(MyD88)in order to clarify their mechanisms of action in the management of epilepsy.Methods:A total of 40 SD rats were randomly assigned to one of five groups:blank,model,NGF model,MSI model,and NGF+MSI model.Epileptic rat models were induced through intraperitoneal injection of lithium chloride and pilocarpine solution.The rats'body mass and behavioral traits were subsequently observed.The Western blotting technique was utilized to detect the levels of NF-kB p65,TLR-4,and MyD88.Results:The findings indicated a more pronounced increase in body mass among the four groups prior to sacrifice,as compared to the model group.Notably,the NGF+MSI model group exhibited significant enhancements in food intake,activity,and body weight.The frequency of seizures in NGF group,MSI group,and NGF+MSI group were(5.33±1.15),(4.33±1.03),and(2.66±1.33)times/7 d,respectively,with neuronal apoptosis rates being(23.17±2.91),(21.38±3.07),(18.19±2.14)%times/7 d,respectively,which were lower than those in the model group.The levels of NF-kB p56,TLR-4,and MyD88 in the hippocampus were reduced in the model group compared to the three treatment groups.Furthermore,the expression levels in the NGF+MSI model group closely resembled those in the control group(P>0.05).Conclusion:Thorough examination revealed that NGF and MSI,either individually or in conjunction,were capable of suppressing the activation of the NF-kB pathway and enhancing the TLR-4/MyD88 signaling pathway to exert an antiepileptic influence.Furthermore,the combined administration of NGF and MSI demonstrated greater efficacy in safeguarding hippocampal neurons in epileptic rats.展开更多
基金the Natural Science Foundation of Hubei Province,No.2003ABA154
文摘BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release of some cytokines and growth factors, while electro-acupuncture may have multi-level, multi-channel and multi-target protective and interventional effects on ischemic brain injury. OBJECTIVE: To observe the effects of electro-acupuncture on STAT3 expression and nuclear translocation in hippocampal CA1 region of rat models of brain ischemia/reperfusion. DESIGN: Randomized and controlled observation. SETTING: Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine; Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Seventy-two healthy SD rats, of clean degree and either gender, weighing (200±20) g, were provided by the Experimental Animal Center of Hubei College of Traditional Chinese Medicine. STAT3 monoclonal antibody was purchased from Santa Cruz Company, USA, and G-6805 electro-acupuncture instrument was purchased from Shanghai Medical Electronic Instruments Factory. METHODS: This experiment was carried out in the comprehensive laboratory of Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine between September 2005 and February 2006. Seventy-two rats were randomly divided into 4 groups: ① control group(n =6): Untouched. ② Sham-operation group (n =18): Artery was isolated, but without inserting thread bolt.③ Model group (n =24): Rat models of local brain ischemia/reperfusion were established with modified suture occlusion. ④Electro-acupuncture group (n =24): Dazhui and bilateral Neiguan points were selected for electro-acupuncture treatment. No. 28 acupuncture needle of 3.33 cm was used in the treatment. A G-6085 electro-acupuncture instrument with continuous wave, frequency of 120 times/min, intensity of 1 mA, 30 min/time, was used. Acupuncture was conducted firstly at ischemia/reperfusion 3 hours, then once every 12 hours. STAT3 positive nuclear translocation in hippocampal CA1 region of rats was observed with immunohistochemical method at 24, 48 and 72 hours after brain ishcemia/reperfusion, and then STAT3 positive cells were counted. MAIN OUTCOME MEASURES: STAT3 positive cells and nuclear translocation in hippocampal CA1 region of rats in each group. RESULTS: All the 72 rats were involved in the result analysis. ①In the control group and sham-operation group, STAT3 positive cells with light cytoplasm and nucleus were decreased , and nuclear translocation was not found. ② In the model group, STAT3 positive cells were mostly found in the cytoplasm of the hippocampal CA1 region at the ischemic side of rats after ischemia/reperfusion 24 hours. They were significantly more than those in the sham-operation group and control group [(18.00±2.68), (9.00±1.35), (8.00±1.22) cells/ mm2, P < 0.01], but cells with nuclear reaction were fewer; At ischemia/reperfusion 48 and 72 hours, STAT3 positive cells were increased, and they were significantly more than those of sham-operation group [(25.00±3.23), (35.00±3.52) cells/mm2, (13.00±1.93), (12.00±1.24) cells/mm2, P < 0.01]. Positive cells with nuclear reaction were found dark-stained. ③At ischemia/reperfusion 24, 48 and 72 hours, STAT3 positive cells were strongly expressed in hippocampal CA1 region at ischemic side of rats of electro-acupuncture group, and they were significantly more than those of model group [(25±3.52), (50±6.31), (75±8.09) cells/mm2, P < 0.01]. STAT3 positive cells were gradually enhanced with time, and considerable STAT3 nuclear positive reaction cells were found. CONCLUSION: Electro-acupuncture can activate STAT3 protein expression in hippocampal tissue of rats with local brain ischemia/reperfusion, promote STAT3 nuclear translocation and function its neuroprotective effect.
文摘Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as the hippocampus,and many of these patients being refractory to treatment with anti-epileptic drugs.Temporal lobe epilepsy is the most common childhood neurological disorder and,compared with adults,the symptoms are greatly affected by age and brain development.Diagnosis of temporal lobe epilepsy relies on clinical examination,patient history,electroencephalographic recordings,and brain imaging.Misdiagnosis or delay in diagnosis is common.A molecular biomarker that could distinguish epilepsy from healthy subjects and other neurological conditions would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated.Among possible biomarkers of pathological changes as well as potential therapeutic targets in the epileptic brain are micro RNAs.Most of the recent studies had performed micro RNA profiling in body fluids such as blood plasma and blood serum and brain tissues such as temporal cortex tissue and hippocampal tissue.A large number of micro RNAs were dysregulated when compared to healthy controls and with some overlap between individual studies that could serve as potential biomarkers.For example,in adults with temporal lobe epilepsy,possible biomarkers are miR-199a-3p in blood plasma and miR-142-5p in blood plasma and blood serum.In adults with mesial temporal lobe epilepsy,possible biomarkers are miR-153 in blood plasma and miR-145-3p in blood serum.However,in many of the studies involving patients who receive one or several anti-epileptic drugs,the influence of these on micro RNA expression in body fluids and brain tissues is largely unknown.Further studies are warranted with children with temporal lobe epilepsy and consideration should be given to utilizing mouse or rat and non-human primate models of temporal lobe epilepsy.The animal models could be used to confirm micro RNA findings in human patients and to test the effects of targeting specific micro RNAs on disease progression and behavior.
基金Supported by Key Projects of Scientific Research in Higher Education Institutions in Hebei Province:Study on the Mechanism of Scalp Acupuncture Yikang Therapy in Cerebral Palsy Rats Based on Notch Signal Pathway(ZD2020144)Doctoral Research Project of Hebei University of Chinese Medicine:Study on the Mechanism of Scalp Acupuncture Yikang Therapy in Cerebral Palsy Rats Based on Notch Signal Pathway(BSZ2020002)。
文摘OBJECTIVE:To investigate the efficacy of scalp acupuncture Yikang therapy on Baihui(GV20),Sishencong(EX-HN1),Zhisanzhen,Niesanzhen,on neurobehavior in young rats with cerebral palsy based on Notch signaling pathway.METHODS:Thirty 7-day-old rats were randomly divided into sham,model and acupuncture,10 rats in each group.The cerebral palsy model was established by the accepted modeling method,the acupuncture group selected"Baihui(GV20)","Sishencong(EX-HN1)","Zhisanzhen"and"Niesanzhen"for intervention 24 h after the model was made.The body masses were recorded before and after the treatment,respectively.After the intervention,the rats were subjected to suspension experiment,slope experiment,tactile stimulation experiment and Morris water maze experiment.After the end of the experiment,the morphological changes of hippocampal histology were observed by hematoxylineosin(HE)staining under light microscope,and the expression of Notch1,Notch3 and Hes5 were detected by Western blot and quantitative real-time polymerase chain reaction(PCR).RESULTS:The changes in body mass of the rats in each group were different;in behavioral experiments,compared with the sham,the suspension time of the model was shortened,the slope experiment,tactile stimulation experiment,and escape latency time were prolonged,and the number of platform crossing was reduced in the model,compared with the model,the suspension time of the acupuncture was prolonged,the slope experiment,tactile stimulation experiment,and escape latency time were shortened,and the number of platform crossing times was increased;HE staining showed severe hippocampal damage in the model and reduced hippocampal damage in the acupuncture.Western Blot and real-time fluorescence quantitative PCR showed that the expression of Notch1,Notch3 and Hes5 were increased in the model and the expression of Notch1,Notch3,Hes5 in acupuncture were decreased.CONCLUSIONS:Scalp acupuncture Yikang therapy may improve neurobehavior and reduce brain injury in rats with cerebral palsy by downregulating the expression of Notch1,Notch3,and Hes5.
文摘Objective:Epilepsy is a prevalent neurological condition,and NF-kB,TLR-4,and MyD88 are significant contributors to its development.Murine nerve growth factor(NGF)and monosialotetrahexosylganlioside sodium for injection(MSI)are essential neurotrophic medications,yet their regulatory mechanism in the pathogenesis of epilepsy remains uncertain.The aim of this research was to examine the impacts of NGF and MSI on nuclear factor-kB(NF-kB)p65,toll-like receptor 4(TLR-4),and myeloid differentiation primary response gene 88(MyD88)in order to clarify their mechanisms of action in the management of epilepsy.Methods:A total of 40 SD rats were randomly assigned to one of five groups:blank,model,NGF model,MSI model,and NGF+MSI model.Epileptic rat models were induced through intraperitoneal injection of lithium chloride and pilocarpine solution.The rats'body mass and behavioral traits were subsequently observed.The Western blotting technique was utilized to detect the levels of NF-kB p65,TLR-4,and MyD88.Results:The findings indicated a more pronounced increase in body mass among the four groups prior to sacrifice,as compared to the model group.Notably,the NGF+MSI model group exhibited significant enhancements in food intake,activity,and body weight.The frequency of seizures in NGF group,MSI group,and NGF+MSI group were(5.33±1.15),(4.33±1.03),and(2.66±1.33)times/7 d,respectively,with neuronal apoptosis rates being(23.17±2.91),(21.38±3.07),(18.19±2.14)%times/7 d,respectively,which were lower than those in the model group.The levels of NF-kB p56,TLR-4,and MyD88 in the hippocampus were reduced in the model group compared to the three treatment groups.Furthermore,the expression levels in the NGF+MSI model group closely resembled those in the control group(P>0.05).Conclusion:Thorough examination revealed that NGF and MSI,either individually or in conjunction,were capable of suppressing the activation of the NF-kB pathway and enhancing the TLR-4/MyD88 signaling pathway to exert an antiepileptic influence.Furthermore,the combined administration of NGF and MSI demonstrated greater efficacy in safeguarding hippocampal neurons in epileptic rats.