Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb.Ho...Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb.However,the molecular mechanism underlying its efficacy remains unclear.In this study,a middle cerebral artery occlusion(MCAO)rat model was produced by the suture method.Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days,starting from the 7^th day after middle cerebral artery occlusion.Day 1 of treatment lasted for 10 minutes at 2r/min,day 2 for 20 minutes at 2 r/min,and from day 3 onward for 20 minutes at 4 r/min.CatWalk gait analysis,adhesive removal test,and Y-maze test were used to investigate motor function,sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21^st day after MCAO.On the 21^st day after MCAO,the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay.The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography.The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats,but had no effect on cognitive function.The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3(Gria3)in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1 A,Avprla in the middle cerebral artery-occluded rats.In the ipsilateral hippocampus,only Adra2 a was downregulated,and there was no significant change in Gria3.Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3,which is an a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor,within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region.The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged.Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion,but had no effect on Synapsin I levels.Besides,we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus.This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats,and suggests that these positive effects occur via the upregulation of the postsynaptic membrane a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression.This study was approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.展开更多
Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an ...Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an attempt to observe the effect of baicalin on neurogenesis in chronically stressed rats. Results showed that subcutaneous injection of corticosterone significantly decreased the total number of doublecortin-positive neurons in the hippocampus. The reduced cell number caused by corticosterone was mainly due to the decrease of class II doublecortin-positive neurons, but the class I doublecortin-positive neurons were unaffected. Baicalin treatment increased the number of both class I and class II doublecortin-positive neurons. In addition, doublecortin-positive neurons showed less complexity in dendritic morphology after corticosterone injection, and this change was totally reversed by baicalin treatment. These findings suggest that baicalin exhibits a beneficial effect on adult neurogenesis.展开更多
Objective:To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure.Methods:The study was carried out using thirty-two adult...Objective:To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure.Methods:The study was carried out using thirty-two adult malnourished mice which were randomly assigned into four groups(n=8):A,B,C and D.Group A served as control,while the other groups served as the experimental groups.Animals in group A were fed malnourished diet ad libitum and given water liberally.Animals in group B were administered with 3-Nitropropionic acid(3-NP)(neurotoxin)only at 20 rag/kg body weight,group C were given only Garcinia kola extracts,and group D were pre-treated with Garcinia kola extracts at 200 mg/kg for seven days prior to administration of neurotoxin at 20 mg/kg body weight.After three days of neurotoxins administration in the relevant groups,the brains were excised and fixed in formal calcium for histological processing.Results:The study showed that hippocampal and cerebellar neurons of animals in group B exhibited some cellular degeneration and blood vessel blockage,which were not seen in groups A,C and D.Cresyl violet staining was least intense in group B than in groups A,C and D.Despite the fact that animals in group D has equal administration of 3-Nitropropionic acid concentration,there were no traces of neural degeneration as it was evidenced in group B.Conclusions:It is concluded that Garcinia kola has protective effects on the neurons of the hippocampus and cerebellum of malnourished mice.展开更多
Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the...Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus.Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-βor long-term depression,a form of synaptic weakening involved in learning and memory,share similar mechanisms.Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging.Conversely,certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau,in particular,phosphorylation at residue Ser396.Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau(hyper)phosphorylation.We first summarize experimental evidence regarding tau-long-term depression interactions,followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer’s disease.Finally,we conclude with some thoughts and perspectives on future research about these interactions.展开更多
Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, pr...Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had dis- appeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-medi- ated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraqnat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.展开更多
Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of po...Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo- campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.展开更多
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangl...Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangles (NFTs); these hormones can regulate Tau phosphorylation and the principal kinase GSK3β involved in this process. Hormone replacement therapy decreases NFTs, but it increases the risk of some types of cancer. However, other synthetic hormones such as tibolone (TIB) have been used for hormone replacement therapy. The aim of this work was to evaluate the long-term effects of TIB (0.01 mg/kg and 1mg/kg, intragastrically for 12 weeks) on the content of total and hyperphosphorylated Tau (PHF-1) proteins and the regulation of GSK3β/Akt/PI3K pathway and CDK5/p35/p25 complexes in the hippocampus of aged male mice. We observed that the content of PHF-1 decreased with TIB administration. In contrast, no changes were observed in the active form of GSK3β or PI3K. TIB decreased the expression of the total and phosphorylated form of Akt while increased that of p110 and p85. The content of CDK5 was differentially modified with TIB: it was increased at low doses and decreased at high doses. When we analyzed the content of CDK5 activators, an increase was found on p35; however, the content of p25 decreased with administration of low dose of TIB. Our results suggest a possible mechanism of action of TIB in the hippocampus of aged male mice. Through the regulation of Tau and GSK3β/Akt/PI3K pathway, and CDK5/p35/p25 complexes, TIB may modulate neuronal plasticity and regulate learning and memory processes.展开更多
Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemi...Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-a and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and an-tiinflammatory actions.展开更多
Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba. To date, limited studies have dete...Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba. To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin(DCX), brain-derived neurotrophic factor, and growth associated protein-43(GAP-43) in the hippocampus. Simultaneously, DCX-and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.展开更多
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra.A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-p...Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra.A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) or 1-methyl-4-phenylpyridinium ion(MPP+),which cause the death of dopaminergic neurons.Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents.However,it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+.In this study,MPP+(100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease.At 7 days after administration,the number of bromodeoxyuridine(Brd U)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased,indicating enhanced neurogenesis.In contrast,a reduction in Brd U-positive cells was detected in the substantia nigra.Administration of brain-derived neurotrophic factor(100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra.These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.展开更多
The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise...The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particulady the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotJc proteJn Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise.展开更多
Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function....Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.展开更多
Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with...Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with equivalent volumes of saline served as controls. Hippocampal samples were collected at 1,7 or 14 days following administration. Electron microscopy showed that neuronal structure changed noticeably following ketamine treatment. Specifically, microtubular structure became irregular and disorganized. Quantitative real time-PCR revealed that phosphorylated tau mRNA was upregulated after ketamine. Western blot analysis demonstrated that phosphorylated tau levels at serine 396 initially decreased at 1 day after ketamine injection, and then gradually returned to control values. At 14 days after injection, levels of phosphorylated tau were higher in the ketamine group than in the control group. Tau protein phosphorylated at serine 404 significantly increased after ketamine injection and then gradually decreased with time. However, the levels of tau protein at serine 404 were significantly greater in the ketamine group than in the control group until 14 days. The present results indicate that ketamine induces an increase of phosphorylated tau mRNA and excessive phosphorylation of tau protein at serine 404, causing disruption of microtubules in the neonatal rat hippocampus and potentially resulting in damage to hippocampal neurons.展开更多
Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-p...Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (roTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model, These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR sig- naling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.展开更多
The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive func- tion during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-...The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive func- tion during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4; 1.6 gg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cyto- skeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60% to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were in- creased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deficits.展开更多
The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to t...The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to the hippocampus.In this study,we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test.Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury.Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus,as well as in the density of mature dendritic spines.To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage,we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury.The differentially expressed proteins were mainly enriched in inflammation,immunity,and coagulation,suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury.In contrast,differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure,which is more consistent with neurodegeneration.We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury,and western blotting showed that,while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury,its phosphorylation level was significantly increased,which is consistent with the omics results.Administration of GRP78608,an N-methyl-D-aspartate receptor 1 antagonist,to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment.In conclusion,our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.展开更多
The hippocampus is involved in the regulation of the autonomic nervous system,together with the hypothalamus and brainstem nuclei,such as the paraventricular nucleus and nucleus tractus solitarius.The vagus nerve-nucl...The hippocampus is involved in the regulation of the autonomic nervous system,together with the hypothalamus and brainstem nuclei,such as the paraventricular nucleus and nucleus tractus solitarius.The vagus nerve-nucleus tractus solitarius pathway has an important role in cardiovascular reflex regulation.Myocardial ischemia has been shown to cause changes in the autonomic nervous system,affecting the dynamic equilibrium of the sympathetic and vagal nerves.However,it remains poorly understood how the hippocampus communicates with brainstem nuclei to regulate the autonomic nervous system and alleviate myocardial ischemic tissue damage.A rat model of acute myocardial ischemia(AMI) was made by ligating the left anterior descending branch of the coronary artery.Three days before ischemia,the hippocampal CA1 region was damaged.Then,3 days after ischemia,electroacupuncture(EA) at Shenmen(HT7)-Tongli(HT5) was performed(continuous wave,1 m A,2 Hz,duration of 30 minutes).Cluster analysis of firing patterns showed that one type of neuron was found in rats in the sham and AMI groups.Three types of neurons were observed in the AMI + EA group.Six types of neurons were found in the AMI + EA + Lesion group.Correlation analysis showed that the frequency of vagus nerve discharge in each group was negatively correlated with heart rate(HR)(P 〈 0.05,r =-0.424),and positively correlated with mean arterial pressure(MAP)(P 〈 0.05,r = 0.40987) and the rate-pressure product(RPP)(P 〈 0.05,r = 0.4252).The total frequency of the nucleus tractus solitarius discharge in each group was positively correlated with vagus nerve discharge(P 〈 0.01,r = 0.7021),but not with hemodynamic index(HR: P 〉 0.05,r =-0.03263; MAP: P 〉 0.05,r =-0.08993; RPP: P 〉 0.05,r =-0.03263).Some neurons(Neuron C) were negatively correlated with vagus nerve discharge,HR,MAP and RPP in the AMI + EA group(vagus nerve discharge: P 〈 0.05,r =-0.87749; HR: P 〈 0.01,r =-0.91902; MAP: P 〈 0.05,r =-0.85691; RPP: P 〈 0.01,r =-0.91902).Some neurons(Neurons C,D and E) were positively correlated with vagus nerve discharge,HR,MAP and RPP in the AMI + EA + Lesion group(vagus nerve discharge: P 〈 0.01,r = 0.8905,P 〈 0.01,r = 0.9725,P 〈 0.01,r = 0.9054; HR: P 〈 0.01,r = 0.9347,P 〈 0.01,r = 0.9089,P 〈 0.05,r = 0.8247; MAP: P 〈 0.05,r = 0.8474,P 〈 0.01,r = 0.9691,P 〈 0.01,r = 0.9027; RPP: P 〈 0.05,r = 0.8637,P 〈 0.01,r = 0.9407,P 〈 0.01,r = 0.9027).These findings show that the hippocampus-nucleus tractus solitarius-vagus nerve pathway is involved in the cardioprotective effect of EA at the heart meridian.Some interneurons in the nucleus tractus solitarius may play a particularly important role in the cardiomodulatory process.展开更多
Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of t...Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.展开更多
Genistein is one of several isoflavones that has a structure similar to 17β-estradiol, has a strong antioxidant effect, and a high affinity to estrogen receptors. At 15 weeks after ovariectomy, the expression of Bcl-...Genistein is one of several isoflavones that has a structure similar to 17β-estradiol, has a strong antioxidant effect, and a high affinity to estrogen receptors. At 15 weeks after ovariectomy, the expression of Bcl-2 in the hippocampus of rats decreased and Bax expression increased, with an obvious upregulation of apoptosis. However, intraperitoneal injection of genistein or 17β-estradiol for 15 consecutive weeks from the second day after operation upregulated Bcl-2 protein expression downregulated Bax protein expression, and attenuated hippocampal neuron apoptosis. Our experimental findings indicate that long-term intervention with genistein can lead to a decrease in apoptosis in hippocampal neurons following ovadectomy, upregulate the expression of Bcl-2, and downregulate the expression of Bax. In addition, genistein and 17β-estradiol play equal anti-apoptotic and neuroprotective roles.展开更多
基金supported by the National Natural Science Foundation of China,No.81871841(to YLB) and No.81772453(to DSX)
文摘Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb.However,the molecular mechanism underlying its efficacy remains unclear.In this study,a middle cerebral artery occlusion(MCAO)rat model was produced by the suture method.Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days,starting from the 7^th day after middle cerebral artery occlusion.Day 1 of treatment lasted for 10 minutes at 2r/min,day 2 for 20 minutes at 2 r/min,and from day 3 onward for 20 minutes at 4 r/min.CatWalk gait analysis,adhesive removal test,and Y-maze test were used to investigate motor function,sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21^st day after MCAO.On the 21^st day after MCAO,the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay.The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography.The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats,but had no effect on cognitive function.The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3(Gria3)in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1 A,Avprla in the middle cerebral artery-occluded rats.In the ipsilateral hippocampus,only Adra2 a was downregulated,and there was no significant change in Gria3.Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3,which is an a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor,within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region.The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged.Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion,but had no effect on Synapsin I levels.Besides,we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus.This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats,and suggests that these positive effects occur via the upregulation of the postsynaptic membrane a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression.This study was approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.
基金supported by the National Natural Science Foundation of China,No. 81070994the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of the People’s Republic of China,No. 2009/8
文摘Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an attempt to observe the effect of baicalin on neurogenesis in chronically stressed rats. Results showed that subcutaneous injection of corticosterone significantly decreased the total number of doublecortin-positive neurons in the hippocampus. The reduced cell number caused by corticosterone was mainly due to the decrease of class II doublecortin-positive neurons, but the class I doublecortin-positive neurons were unaffected. Baicalin treatment increased the number of both class I and class II doublecortin-positive neurons. In addition, doublecortin-positive neurons showed less complexity in dendritic morphology after corticosterone injection, and this change was totally reversed by baicalin treatment. These findings suggest that baicalin exhibits a beneficial effect on adult neurogenesis.
文摘Objective:To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure.Methods:The study was carried out using thirty-two adult malnourished mice which were randomly assigned into four groups(n=8):A,B,C and D.Group A served as control,while the other groups served as the experimental groups.Animals in group A were fed malnourished diet ad libitum and given water liberally.Animals in group B were administered with 3-Nitropropionic acid(3-NP)(neurotoxin)only at 20 rag/kg body weight,group C were given only Garcinia kola extracts,and group D were pre-treated with Garcinia kola extracts at 200 mg/kg for seven days prior to administration of neurotoxin at 20 mg/kg body weight.After three days of neurotoxins administration in the relevant groups,the brains were excised and fixed in formal calcium for histological processing.Results:The study showed that hippocampal and cerebellar neurons of animals in group B exhibited some cellular degeneration and blood vessel blockage,which were not seen in groups A,C and D.Cresyl violet staining was least intense in group B than in groups A,C and D.Despite the fact that animals in group D has equal administration of 3-Nitropropionic acid concentration,there were no traces of neural degeneration as it was evidenced in group B.Conclusions:It is concluded that Garcinia kola has protective effects on the neurons of the hippocampus and cerebellum of malnourished mice.
基金supported by the National Natural Science Foundation of China (U2004134)Zhengzhou University (140/32310295) to NWH+2 种基金by Science Foundation Ireland(19/FFP/6437 and 14/IA/2571) to MJRa scholarship granted by the China Scholarship Council (CSC20200704504 7) to YY
文摘Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus.Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-βor long-term depression,a form of synaptic weakening involved in learning and memory,share similar mechanisms.Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging.Conversely,certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau,in particular,phosphorylation at residue Ser396.Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau(hyper)phosphorylation.We first summarize experimental evidence regarding tau-long-term depression interactions,followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer’s disease.Finally,we conclude with some thoughts and perspectives on future research about these interactions.
基金supported by a grant from the National Key Specialty Construction Project in China in 2012,No.[2012]650
文摘Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had dis- appeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-medi- ated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraqnat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.
基金supported by a grant from the Experimental Animal Science and Technology Project of Zhejiang Province in China,No.2012C37083
文摘Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo- campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.
基金supported by FIS/IMSS project No.FIS/IMSS/PROT/G13/1216COFAA+1 种基金SIP-IPNby DGAPA-UNAM IN203616
文摘Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangles (NFTs); these hormones can regulate Tau phosphorylation and the principal kinase GSK3β involved in this process. Hormone replacement therapy decreases NFTs, but it increases the risk of some types of cancer. However, other synthetic hormones such as tibolone (TIB) have been used for hormone replacement therapy. The aim of this work was to evaluate the long-term effects of TIB (0.01 mg/kg and 1mg/kg, intragastrically for 12 weeks) on the content of total and hyperphosphorylated Tau (PHF-1) proteins and the regulation of GSK3β/Akt/PI3K pathway and CDK5/p35/p25 complexes in the hippocampus of aged male mice. We observed that the content of PHF-1 decreased with TIB administration. In contrast, no changes were observed in the active form of GSK3β or PI3K. TIB decreased the expression of the total and phosphorylated form of Akt while increased that of p110 and p85. The content of CDK5 was differentially modified with TIB: it was increased at low doses and decreased at high doses. When we analyzed the content of CDK5 activators, an increase was found on p35; however, the content of p25 decreased with administration of low dose of TIB. Our results suggest a possible mechanism of action of TIB in the hippocampus of aged male mice. Through the regulation of Tau and GSK3β/Akt/PI3K pathway, and CDK5/p35/p25 complexes, TIB may modulate neuronal plasticity and regulate learning and memory processes.
基金supported by the Natural Science Foundation of Taishan Medical University in China,No.2007.ZR-087
文摘Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-a and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and an-tiinflammatory actions.
基金supported by the Natural Science Foundation of Guangdong Province of China,No.2014A030310455the Pearl River S&T Nova Program Foundation of Guangzhou City of China,No.201710010002
文摘Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba. To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin(DCX), brain-derived neurotrophic factor, and growth associated protein-43(GAP-43) in the hippocampus. Simultaneously, DCX-and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.
基金supported by the National Natural Science Foundation of China,No.31320103906(to TB)
文摘Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra.A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) or 1-methyl-4-phenylpyridinium ion(MPP+),which cause the death of dopaminergic neurons.Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents.However,it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+.In this study,MPP+(100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease.At 7 days after administration,the number of bromodeoxyuridine(Brd U)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased,indicating enhanced neurogenesis.In contrast,a reduction in Brd U-positive cells was detected in the substantia nigra.Administration of brain-derived neurotrophic factor(100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra.These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.
基金supported by the National Natural Science Foundation of China, No. 30500269
文摘The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particulady the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotJc proteJn Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise.
基金supported by grant PID2021-125875OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by"ERDF A way of making Europe"(to RL)supported by a grant from Junta de Comunidades de Castilla-La Mancha (SBPLY/21/180501/000064)+3 种基金Universidad de Castilla-La Mancha (2023-GRIN-34187)(to RL).Grant PID201 9-104921RB-I00/MCI/AEI/10.13039/501100011033 (to AGO)the Foundation for Applied Medical Research,the University of Navarra (Pamplona,Spain)for financial supporthe Asociación de Amigos of the University of Navarra for the grant (to SB)Margarita Salas fellowship from Ministerio de Universidades and Universidad de Castilla-La Mancha (to AMB)
文摘Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
基金supported by the project of the Ministry of Education, Zhejiang Province, China, No. Y201017446 and Y201121392the project of the Bureau of Chinese Medicine, Zhejiang Province, China, No. 2011ZA067
文摘Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with equivalent volumes of saline served as controls. Hippocampal samples were collected at 1,7 or 14 days following administration. Electron microscopy showed that neuronal structure changed noticeably following ketamine treatment. Specifically, microtubular structure became irregular and disorganized. Quantitative real time-PCR revealed that phosphorylated tau mRNA was upregulated after ketamine. Western blot analysis demonstrated that phosphorylated tau levels at serine 396 initially decreased at 1 day after ketamine injection, and then gradually returned to control values. At 14 days after injection, levels of phosphorylated tau were higher in the ketamine group than in the control group. Tau protein phosphorylated at serine 404 significantly increased after ketamine injection and then gradually decreased with time. However, the levels of tau protein at serine 404 were significantly greater in the ketamine group than in the control group until 14 days. The present results indicate that ketamine induces an increase of phosphorylated tau mRNA and excessive phosphorylation of tau protein at serine 404, causing disruption of microtubules in the neonatal rat hippocampus and potentially resulting in damage to hippocampal neurons.
基金supported by the National Natural Science Foundation of China,No.81301659,81401077
文摘Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (roTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model, These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR sig- naling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.
基金supported by the National Natural Science Foundation of China,No.81273416Fundamental Research Funds for the Central Universities,No.XDJK2013A030
文摘The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive func- tion during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4; 1.6 gg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cyto- skeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60% to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were in- creased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deficits.
基金funded by the National Natural Science Foundation of China,Nos.82171363(to PL),82171321(to XL),82171458(to XJ)the Youth Nova Program of Shaanxi,No.2021KJXX-19(to PL)。
文摘The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to the hippocampus.In this study,we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test.Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury.Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus,as well as in the density of mature dendritic spines.To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage,we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury.The differentially expressed proteins were mainly enriched in inflammation,immunity,and coagulation,suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury.In contrast,differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure,which is more consistent with neurodegeneration.We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury,and western blotting showed that,while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury,its phosphorylation level was significantly increased,which is consistent with the omics results.Administration of GRP78608,an N-methyl-D-aspartate receptor 1 antagonist,to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment.In conclusion,our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.
基金supported by the National Natural Science Foundation of China,No.81273858a grant from the Anhui University Research and Innovation Platform Team Construction Project in China,No.2015TD033
文摘The hippocampus is involved in the regulation of the autonomic nervous system,together with the hypothalamus and brainstem nuclei,such as the paraventricular nucleus and nucleus tractus solitarius.The vagus nerve-nucleus tractus solitarius pathway has an important role in cardiovascular reflex regulation.Myocardial ischemia has been shown to cause changes in the autonomic nervous system,affecting the dynamic equilibrium of the sympathetic and vagal nerves.However,it remains poorly understood how the hippocampus communicates with brainstem nuclei to regulate the autonomic nervous system and alleviate myocardial ischemic tissue damage.A rat model of acute myocardial ischemia(AMI) was made by ligating the left anterior descending branch of the coronary artery.Three days before ischemia,the hippocampal CA1 region was damaged.Then,3 days after ischemia,electroacupuncture(EA) at Shenmen(HT7)-Tongli(HT5) was performed(continuous wave,1 m A,2 Hz,duration of 30 minutes).Cluster analysis of firing patterns showed that one type of neuron was found in rats in the sham and AMI groups.Three types of neurons were observed in the AMI + EA group.Six types of neurons were found in the AMI + EA + Lesion group.Correlation analysis showed that the frequency of vagus nerve discharge in each group was negatively correlated with heart rate(HR)(P 〈 0.05,r =-0.424),and positively correlated with mean arterial pressure(MAP)(P 〈 0.05,r = 0.40987) and the rate-pressure product(RPP)(P 〈 0.05,r = 0.4252).The total frequency of the nucleus tractus solitarius discharge in each group was positively correlated with vagus nerve discharge(P 〈 0.01,r = 0.7021),but not with hemodynamic index(HR: P 〉 0.05,r =-0.03263; MAP: P 〉 0.05,r =-0.08993; RPP: P 〉 0.05,r =-0.03263).Some neurons(Neuron C) were negatively correlated with vagus nerve discharge,HR,MAP and RPP in the AMI + EA group(vagus nerve discharge: P 〈 0.05,r =-0.87749; HR: P 〈 0.01,r =-0.91902; MAP: P 〈 0.05,r =-0.85691; RPP: P 〈 0.01,r =-0.91902).Some neurons(Neurons C,D and E) were positively correlated with vagus nerve discharge,HR,MAP and RPP in the AMI + EA + Lesion group(vagus nerve discharge: P 〈 0.01,r = 0.8905,P 〈 0.01,r = 0.9725,P 〈 0.01,r = 0.9054; HR: P 〈 0.01,r = 0.9347,P 〈 0.01,r = 0.9089,P 〈 0.05,r = 0.8247; MAP: P 〈 0.05,r = 0.8474,P 〈 0.01,r = 0.9691,P 〈 0.01,r = 0.9027; RPP: P 〈 0.05,r = 0.8637,P 〈 0.01,r = 0.9407,P 〈 0.01,r = 0.9027).These findings show that the hippocampus-nucleus tractus solitarius-vagus nerve pathway is involved in the cardioprotective effect of EA at the heart meridian.Some interneurons in the nucleus tractus solitarius may play a particularly important role in the cardiomodulatory process.
基金This study was funded by the National Natural Science Foundation of China,No.81470200(to XJR).
文摘Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.
基金supported by Hunan Provincial Traditional Medicine Administration Bureau,No.2010044
文摘Genistein is one of several isoflavones that has a structure similar to 17β-estradiol, has a strong antioxidant effect, and a high affinity to estrogen receptors. At 15 weeks after ovariectomy, the expression of Bcl-2 in the hippocampus of rats decreased and Bax expression increased, with an obvious upregulation of apoptosis. However, intraperitoneal injection of genistein or 17β-estradiol for 15 consecutive weeks from the second day after operation upregulated Bcl-2 protein expression downregulated Bax protein expression, and attenuated hippocampal neuron apoptosis. Our experimental findings indicate that long-term intervention with genistein can lead to a decrease in apoptosis in hippocampal neurons following ovadectomy, upregulate the expression of Bcl-2, and downregulate the expression of Bax. In addition, genistein and 17β-estradiol play equal anti-apoptotic and neuroprotective roles.