To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目...针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目标根模型、部件模型和对应可变形部件特征表示,该模型不仅描述目标的整体轮廓,而且能够捕捉到更为精细的目标部件轮廓,在一定程度上提高了检测算法在目标姿态复杂情况下的鲁棒性。然后利用HOG特征混合特征训练部件检测分类器LSVM(Latent Support Vector Machine)。最后通过动态规划和距离转换算法在测试图上扫描出与可变形部件模型相匹配的区域,实现感兴趣目标的检测定位。经过多组实验结果表明,所提出的算法能较好地解决目标在发生较大形变和存在遮挡等复杂姿态下的定位问题。展开更多
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
文摘针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目标根模型、部件模型和对应可变形部件特征表示,该模型不仅描述目标的整体轮廓,而且能够捕捉到更为精细的目标部件轮廓,在一定程度上提高了检测算法在目标姿态复杂情况下的鲁棒性。然后利用HOG特征混合特征训练部件检测分类器LSVM(Latent Support Vector Machine)。最后通过动态规划和距离转换算法在测试图上扫描出与可变形部件模型相匹配的区域,实现感兴趣目标的检测定位。经过多组实验结果表明,所提出的算法能较好地解决目标在发生较大形变和存在遮挡等复杂姿态下的定位问题。