期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Novel insights into histone lysine methyltransferases in cancer therapy:From epigenetic regulation to selective drugs 被引量:1
1
作者 Qili Liao Jie Yang +3 位作者 Shengfang Ge Peiwei Chai Jiayan Fan Renbing Jia 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第2期127-141,共15页
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chem... The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers. 展开更多
关键词 Cancer EPIGENETICS histone lysine methyltransferase Epigenetic inhibitors Combined therapeutic strategy Clinical application
下载PDF
ZMYND10 downregulates cyclins B1 and D1 to arrest cell cycle by trimethylating lysine 9 on histone 3
2
作者 Long-Ji Wu Xiang-Ning Zhang +5 位作者 Jian Wang Xia Kong Bi-Ying Zheng Jing Huang Hong-Bing Yu Zhi-Wei He 《Life Research》 2021年第4期17-24,共8页
The BLU gene coding for zinc finger,MYND-type containing 10(ZMYND10)protein is mapped on chromosomal region 3p21.It is frequently lost in some kinds of cancers due to hypermethylation on its promoter region and identi... The BLU gene coding for zinc finger,MYND-type containing 10(ZMYND10)protein is mapped on chromosomal region 3p21.It is frequently lost in some kinds of cancers due to hypermethylation on its promoter region and identified as a tumour suppressor gene.The underlying mechanisms for BLU-mediated tumor suppression remain unclear.BLU has been reported to disturb cell cycle progression.The present study aims at examining whether ZMYND10 prevents progression of the cell cycle by targeting to repressive histone marks and downregulating the level of cyclins.Proteins structurally similar with ZMYND10 have been shown to recognize DNA sequence upstream of coding portion of the gene encoding cell cycle regulators.Enzymes,notably demethylases modifying the lysine residues are over-expressed line oncoproteins,and targeted in anti-cancer therapy.BLU was re-expressed in H1299 and HepG2 cells.The level of cyclin D1,cyclin B1 and trimethylate lysine 9 on histone 3(H3K9me3)and the binding of BLU with SIN3A(a component of the co-repressor)were detected.Cell cycle profile was measured.The evolutionary relationship between ZMYND10 and other ZMYND proteins was analysed by phylogenetic tree construction.We found that BLU expression induced G1 arrest in H1299 cells,and induced G1/G2 arrest in HepG2 cells.Cell cycle arrest was correlated with reduced activities and levels of cyclins;cyclin D1 was downregulated in H1299 cells;Both cyclin B1 and D1 were downregulated in HepG2 cells;and that BLU was associated with SIN3A.In both cell lines,the expression of H3K9me3 was induced.BLU was clustered with histone methyltransferase SMYD3 and SMYD1 on the same clade of the deduced phylogenetic tree.The results thus suggested that ZMYND10 encoded by BLU inhibited cyclins activity to prevent cell cycle progression through interaction with repressors and histone repressive marks to block the expression of genes coding for cyclins. 展开更多
关键词 BLU/ZMYND10 tumor suppression cell cycle arrest CYCLIN trimethylated lysine 9 on histone 3
下载PDF
Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells 被引量:12
3
作者 Peng Deng Qian-Ming Chen +1 位作者 Christine Hong Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期197-204,共8页
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-ba... Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs. 展开更多
关键词 ADIPOGENESIS histone methylation histone lysine methyltransferase histone lysine demethylase mesenchymal stemcells osteogenesis
下载PDF
Effects of DNA Methylation and Histone Modification on Differentiation-associated Gene Expression in ES,NIH3T3,and NIT-1
4
作者 方爱平 张悦 +4 位作者 李明岳 郭辉 余小舫 李富荣 胡泓 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第1期10-16,共7页
The effects of epigenetic modification on the differentiation of islet cells and the expression of associated genes(Pdx-1,Pax4,MafA,and Nkx6.1,etc) were investigated.The promoter methylation status of islet differen... The effects of epigenetic modification on the differentiation of islet cells and the expression of associated genes(Pdx-1,Pax4,MafA,and Nkx6.1,etc) were investigated.The promoter methylation status of islet differentiation-associated genes(Pdx-1,Pax4,MafA and Nkx6.1),Oct4 and MLH1 genes of mouse embryonic stem cells,NIH3T3 cells and NIT-1 cells were profiled by methylated DNA immunoprecipitation,real-time quantitative PCR(MeDIP-qPCR) techniques.The histone modification status of these genes promoter region in different cell types was also measured by using chromatin immunoprecipitation real-time quantitative PCR methods.The expression of these genes in these cells was detected by using real-time quantitative PCR.The relationship between the epigenetic modification(DNA methylation,H3 acetylation,H3K4m3 and H3K9m3) of these genes and their expression was analyzed.The results showed that:(1) the transcription-initiation-sites of Pdx-1,MafA and Nkx6.1 were highly methylated in NIH3T3 cells; (2) NIH3T3 cells showed a significantly higher level of DNA methylation modification in the transcription-initiation-site of Pdx-1,Pax4,MafA and Nkx6.1 genes than that in mES cells and NIT-1 cells(P〈0.05); (3) NIT-1 cells had a significantly higher level of H3K4m3 modification in the transcription-initiation-site of Pdx-1,Pax4,MafA and Nkx6.1 genes than that in mES cells and NIH3T3 cells(P〈0.05),with significantly increased level of gene expression; (4) NIH3T3 cell had a significantly higher level of H3K9m3 modification in the transcription-initiation-site of Pdx-1,Pax4,MafA and Nkx6.1 genes than that in mES cells and with NIT-1 cell(P〈0.05),with no detectable mRNA expression of these genes.It was concluded that histone modification(H3K4m3 and H3K9m3) and DNA methylation might have an intimate communication between each other in the differentiation process from embryonic stem cells into islet cells. 展开更多
关键词 DNA methylation histone 3 lysine 4 trimethylation histone 3 lysine 9 trimethylation histone 3 acetylation gene expression islet DIFFERENTIATION
下载PDF
Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana 被引量:3
5
作者 Guang Lin Ying Zhou +1 位作者 Min Li Yuda Fang 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第2期225-234,共10页
Post-transcriptional modifications of histones play important roles in various biological processes. Here, we report that Arabidopsis plants overexpressing histone H3 lysine to methionine mutations at histone H3.1K36(... Post-transcriptional modifications of histones play important roles in various biological processes. Here, we report that Arabidopsis plants overexpressing histone H3 lysine to methionine mutations at histone H3.1K36(H3.1K36M) and H3.3K36(H3.3K36M) have serious developmental defects with early-flowering and change in the modifications of endogenous histone H3, including acetylation at lysine 9(H3K9ac), trimethylation at lysine 27(H3K27me3), di-and tri-methylation at lysine 36(H3K36me2 and H3K36me3). In addition, H3K36M mutation alters its subcellular localization and interacts with H3K36 methyltransferase SDG8. Our results support a model in which H3K36M stably interacts with SDG8, and inhibits the activity of SDG8 by sequestering SDG8, resulting in a dominant negative effect to affect the proper expression levels of a variety of genes and plant development. 展开更多
关键词 histone H3 lysine to methionine mutation SDG8 dominant negative effect Arabidopsis
原文传递
Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components
6
作者 J. K. Bailey Dzwokai Ma 《Frontiers in Biology》 CAS CSCD 2016年第1期10-18,共9页
The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methy... The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and IncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus. 展开更多
关键词 H3K4MT histone H3 lysine 4 methyltransferase WDR5 RbBP5 ASH2L DPY-30 SET MLL WRAD Oct4 MYC cell biology protein lysine methylation
原文传递
Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins 被引量:3
7
作者 Shutong Xu Chen Zhong +1 位作者 Tianlong Zhang Jianping Ding 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 北大核心 2011年第5期293-300,共8页
The SET-and myeloid-Nervy-DEAF-1(MYND)-domain containing(Smyd)lysine methyltransferases 1–3 share relatively high sequence similarity but exhibit divergence in the substrate specificity.Here we report the crystal str... The SET-and myeloid-Nervy-DEAF-1(MYND)-domain containing(Smyd)lysine methyltransferases 1–3 share relatively high sequence similarity but exhibit divergence in the substrate specificity.Here we report the crystal structure of the full-length human Smyd2 in complex with S-adenosyl-L-homocysteine(AdoHcy).Although the Smyd1–3 enzymes are similar in the overall structure,detailed comparisons demonstrate that they differ substantially in the potential substrate-binding site.The binding site of Smyd3 consists mainly of a deep and narrow pocket,while those of Smyd1 and Smyd2 consist of a comparable pocket and a long groove.In addition,Smyd2,which has lysine methyltransferase activity on histone H3-lysine 36,exhibits substantial differences in the wall of the substrate-binding pocket compared with those of Smyd1 and Smyd3 which have activity specifically on histone H3-lysine 4.The differences in the substrate-binding site might account for the observed divergence in the specificity and methylation state of the substrates.Further modeling study of Smyd2 in complex with a p53 peptide indicates that mono-methylation of p53-Lys372 might result in steric conflict of the methyl group with the surrounding residues of Smyd2,providing a structural explanation for the inhibitory effect of the SET7/9-mediated mono-methylation of p53-Lys372 on the Smyd2-mediated methylation of p53-Lys370. 展开更多
关键词 Smyd2 Smyd proteins SET family histone lysine methyltransferase EPIGENETICS
原文传递
Promising natural lysine specific demethylase 1 inhibitors for cancer treatment:advances and outlooks 被引量:1
8
作者 LI Zhong-Rui GU Meng-Zhen +3 位作者 XU Xiao ZHANG Jing-Han ZHANG Hai-Li HAN Chao 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2022年第4期241-257,共17页
Lysine specific demethylase 1(LSD1),a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9,has become a potential therapeutic target for cancer therapy.LSD1 mediates many... Lysine specific demethylase 1(LSD1),a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9,has become a potential therapeutic target for cancer therapy.LSD1 mediates many cellular signaling pathways and regulates cancer cell proliferation,invasion,migration,and differentiation.Recent research has focused on the exploration of its pharmacological inhibitors.Natural products are a major source of compounds with abundant scaffold diversity and structural complexity,which have made a major contribution to drug discovery,particularly anticancer agents.In this review,we briefly highlight recent advances in natural LSD1 inhibitors over the past decade.We present a comprehensive review on their discovery and identification process,natural plant sources,chemical structures,anticancer effects,and structure-activity relationships,and finally provide our perspective on the development of novel natural LSD1 inhibitors for cancer therapy. 展开更多
关键词 histone lysine demethylase LSD1 inhibitor Natural product ANTICANCER
原文传递
ERα promotes transcription of tumor suppressor gene ApoA-I by establishing H3K27ac-enriched chromatin microenvironment in breast cancer cells
9
作者 Bingjie WANG Yinghui SHEN +1 位作者 Tianyu LIU Li TAN 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第12期1034-1044,共11页
Apolipoprotein A-I(Apo A-I),the main protein component of high-density lipoprotein(HDL),plays a pivotal role in reverse cholesterol transport(RCT).Previous studies indicated a reduction of serum Apo A-I levels in vari... Apolipoprotein A-I(Apo A-I),the main protein component of high-density lipoprotein(HDL),plays a pivotal role in reverse cholesterol transport(RCT).Previous studies indicated a reduction of serum Apo A-I levels in various types of cancer,suggesting Apo A-I as a potential cancer biomarker.Herein,ectopically overexpressed Apo A-I in MDA-MB-231 breast cancer cells was observed to have antitumor effects,inhibiting cell proliferation and migration.Subsequent studies on the mechanism of expression regulation revealed that estradiol(E2)/estrogen receptorα(ERα)signaling activates Apo A-I gene transcription in breast cancer cells.Mechanistically,our Ch IP-seq data showed that ERαdirectly binds to the estrogen response element(ERE)site within the Apo A-I gene and establishes an acetylation of histone 3 lysine 27(H3 K27 ac)-enriched chromatin microenvironment.Conversely,Fulvestrant(ICI 182780)treatment blocked ERαbinding to ERE within the Apo A-I gene and downregulated the H3 K27 ac level on the Apo A-I gene.Treatment with p300 inhibitor also significantly decreased the Apo A-I messenger RNA(m RNA)level in MCF7 cells.Furthermore,the analysis of data from The Cancer Genome Atlas(TCGA)revealed a positive correlation between ERαand Apo A-I expression in breast cancer tissues.Taken together,our study not only revealed the antitumor potential of Apo A-I at the cellular level,but also found that ERαpromotes the transcription of Apo A-I gene through direct genomic effects,and p300 may act as a co-activator of ERαin this process. 展开更多
关键词 Apolipoprotein A-I(ApoA-I) Estrogen receptorα(ERα) Acetylation of histone 3 lysine 27(H3K27ac) p300 Breast cancer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部