Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,...Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.展开更多
Huntington’s disease(HD)is a currently incurable,late onset,progressive,ultimately fatal neurological disorder(Bates et al.,2015).We have recently published the results of comprehensive genetic interaction tests ...Huntington’s disease(HD)is a currently incurable,late onset,progressive,ultimately fatal neurological disorder(Bates et al.,2015).We have recently published the results of comprehensive genetic interaction tests aimed at identification of histone methyltransferases and demethylases involved in HD pathogenesis in a Drosophila model of the disease(Song et al.,2018).展开更多
Cytokinins influence many aspects of plant growth and development.Although cytokinin biosynthesis and signaling have been well studied in planta,little is known about the regulatory effects of epigenetic modifications...Cytokinins influence many aspects of plant growth and development.Although cytokinin biosynthesis and signaling have been well studied in planta,little is known about the regulatory effects of epigenetic modifications on the cytokinin response.Here,we reveal that mutations to Morf Related Gene(MRG)proteins MRG1/MRG2,which are readers of trimethylated histone H3 lysine 4 and lysine 36(H3K4me3 and H3K36me3),result in cytokinin hyposensitivity during various developmental processes,including callus induction and root and seedling growth inhibition.Similar to the mrg1 mrg2 mutant,plants with a defective AtTCP14,which belongs to the TEOSINTE BRANCHED,CYCLOIDEA,AND PROLIFERATING CELL FACTOR(TCP)transcription factor family,are insensitive to cytokinin.Furthermore,the transcription of several genes related to cytokinin signaling pathway is altered.Specifically,the expression of Arabidopsis thaliana HISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2(AHP2)decreases significantly in the mrg1 mrg2 and tcp14-2 mutants.We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo.Thus,MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression.In summary,our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.展开更多
AIM: To identify the relationship between DNA hyper- methylation and histone modification at a hyperme- thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether al...AIM: To identify the relationship between DNA hyper- methylation and histone modification at a hyperme- thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification. METHODS: We used chromatin immunoprecipitation (CHIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and rnutL homolog 1 (MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylation- specific PCR (MSP) to evaluate the effect of 5-Aza-2'- deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status. We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression. RESULTS: For thep16 and MLH1 genes in two cell lines, silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation. Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza- dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected alter TSA treatment, andincreased moderately at the silenced loci after 5-Aza-dC treatment. CONCLUSION: Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely correlate with DNA methylation status of each gene in gastric cancer cells. Alteration of DNA methylation affects histone modification.展开更多
Plants have a close relationship with their root microbiota,which comprises a complex microbial network.Histone methylation is an important epigenetic modification influencing multiple plant traits;however,little is k...Plants have a close relationship with their root microbiota,which comprises a complex microbial network.Histone methylation is an important epigenetic modification influencing multiple plant traits;however,little is known about the role of plant histone methylation in the assembly and network structure of the root microbiota.In this study,we established that the rice(Oryza sativa)histone methylation regulates the structure and composition of the root microbiota,especially the hub species in the microbial network.DJjmj703(defective in histone H3K4 demethylation)and ZH11-sdg714(defective in H3K9 methylation)showed significant different root microbiota compared with the corresponding wild types at the phylum and family levels,with a consistent increase in the abundance of Betaproteobacteria and a decrease in the Firmicutes.In the root microbial network,35 of 44 hub species in the top 10 modules in the tested field were regulated by at least one histone methylation-related gene.These observations establish that the rice histone methylation plays a pivotal role in regulating the assembly of the root microbiota,providing insights into the links between plant epigenetic regulation and root microbiota.展开更多
Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding o...Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic.Herein,using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers,we observed that disruptor of telomeric silencing-1-like(DOT1L),a methyltransferase of histone H3 lysine 79(H3K79),was activated in UM,especially in the high-risk group.Concordantly,a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells,both in vitro and in vivo.Combining Cleavage Under Targets and Tagmentation(CUT&Tag),RNA sequencing(RNA-seq),and bioinformatics analysis,we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase(NAPRT)and epigenetically activated its expression.Importantly,NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide(NAD^(+))synthesis.Therapeutically,DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79(H3K79me2)in the NAPRT promoter,thereby inhibiting the malignant behaviors of UM.Conclusively,our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.展开更多
Embryonic stem(ES)cells distinct themselves from other cell type populations by their pluripotent ability.The unique features of ES cells are controlled by both genetic and epigenetic factors.Studies have shown that t...Embryonic stem(ES)cells distinct themselves from other cell type populations by their pluripotent ability.The unique features of ES cells are controlled by both genetic and epigenetic factors.Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells.Herein,we summarized recent advances in DNA and histone methylation studies of mammalian ES cells.The methylation status of several key pluripotent regulatory genes is also discussed.展开更多
Histone methylation is an important epigenetic phenomenon that participates in a diverse array of cellular processes and has been found to be associated with cancer. Recent identification of several histone demethylas...Histone methylation is an important epigenetic phenomenon that participates in a diverse array of cellular processes and has been found to be associated with cancer. Recent identification of several histone demethylases has proved that histone methylation is a reversible process. Through a candidate approach, we have biochemically identified JMJD3 as an H3K27 demethylase. Transfection of JMJD3 into HeLa cells caused a specific reduction oftrimethyl H3K27, but had no effect on di-and monomethyl H3K27, or histone lysine methylations on H3K4 and H3K9. The enzymatic activity requires the JmjC domain and the conserved histidine that has been suggested to be important for a cofactor binding. In vitro biochemical experiments demonstrated that JMJD3 directly catalyzes the demethylation. In addition, we found that JMJD3 is upregulated in prostate cancer, and its expression is higher in metastatic prostate cancer. Thus, we identified JMJD3 as a demethylase capable of removing the trimethyl group from histone H3 lysine 27 and upregulated in prostate cancer.展开更多
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-ba...Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs.展开更多
Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcri...Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.展开更多
Histone H3 Lys36(H3K36)methylation and its associated modifiers are crucial for DNA double-strand break(DSB)repair,but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways i...Histone H3 Lys36(H3K36)methylation and its associated modifiers are crucial for DNA double-strand break(DSB)repair,but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear.Here,we unveil the distinct roles of H3K36 dimethylation(H3K36me2)and H3K36 trimethylation(H3K36me3)in DSB repair via non-homologous end joining(NHEJ)or homologous recombination(HR).Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency.y Ku70 and Rfa1 bind H3K36me2-or H3K36me3-modified peptides and chromatin,respectively.Disrupting these interactions impairs y Ku70 and Rfa1 recruitment to damaged H3K36me2-or H3K36me3-rich loci,increasing DNA damage sensitivity and decreasing repair efficiency.Conversely,H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit y Ku70 or Rfa1 under DSB stress.Importantly,human KU70 and RPA1,the homologs of y Ku70 and Rfa1,exclusively associate with H3K36me2 and H3K36me3 in a conserved manner.These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways,highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.展开更多
Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. ...Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4trimethylation(H3K4me3) and histone H3 lysine 27 trimethylation(H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5 B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction(qP CR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial–temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5 B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.展开更多
Histone methylation is believed to provide binding sites for specific reader proteins, which translate histone code into biological function. Here we show that a family of acidic domain-containing proteins including n...Histone methylation is believed to provide binding sites for specific reader proteins, which translate histone code into biological function. Here we show that a family of acidic domain-containing proteins including nucleophosmin (NPM 1), pp32, SET/TAF 113, nucleolin (NCL) and upstream binding factor (UBF) are novel H3K4me2-binding proteins. These proteins exhibit a unique pattern of interaction with methylated H3K4, as their binding is stimulated by H3K4me2 and inhibited by H3K4mel and H3K4me3. These proteins contain one or more acidic domains consisting mainly of aspartic and/or glutamic residues that are necessary for preferential binding of H3K4me2. Furthermore, we demonstrate that the acidic domain with sufficient length alone is capable of binding H3K4me2 in vitro and in vivo. NPM1, NCL and UBF require their acidic domains for association with and transcriptional activation ofrDNA genes. Interestingly, by defining acidic domain as a sequence with at least 20 acidic residues in 50 continuous amino acids, we identified 655 acidic domain-containing protein coding genes in the human genome and Gene Ontology (GO) analysis showed that many of the acidic domain proteins have chromatin-related functions. Our data suggest that acidic domain is a novel histone binding motif that can differentially read the status of H3K4 methylation and is broadly present in chromatin-associated proteins.展开更多
Objective SET8 is a member of the SET domain-containing family and the only known lysine methyltransferase(KMT)that monomethylates lysine 20 of histone H4(H4 K20 me1).SET8 has been implicated in many essential cellula...Objective SET8 is a member of the SET domain-containing family and the only known lysine methyltransferase(KMT)that monomethylates lysine 20 of histone H4(H4 K20 me1).SET8 has been implicated in many essential cellular processes,including cell cycle regulation,DNA replication,DNA damage response,and carcinogenesis.There is no conclusive evidence,however,regarding the effect of SET8 on radiotherapy.In the current study we determined the efficacy of SET8 inhibition on radiotherapy of tumors and the underlying mechanism.Methods First,we explored the radiotherapy benefit of the SET8 expression signature by analyzing clinical data.Then,we measured a series of biological endpoints,including the xenograft tumor growth in mice and apoptosis,frequency of micronuclei,and foci of 53 BP1 andγ-H2 AX in cells to detect the SET8 effects on radiosensitivity.RNA sequencing and subsequent experiments were exploited to verify the mechanism underlying the SET8 effects on radiotherapy.Results Low expression of SET8 predicted a better benefit to radiotherapy in lung adenocarcinoma(LUAD)and invasive breast carcinoma(BRCA)patients.Furthermore,genetic deletion of SET8 significantly enhanced radiation treatment efficacy in a murine tumor model,and A549 and MCF7 cells;SET8 overexpression decreased the radiosensitivity.SET8 inhibition induced more apoptosis,the frequency of micronuclei,and blocked the kinetics process of DNA damage repair as 53 BP1 andγ-H2 AX foci remained in cells.Moreover,RNF8 was positively correlated with the SET8 impact on DNA damage repair.Conclusion Our results demonstrated that SET8 inhibition enhanced radiosensitivity by suppressing DNA damage repair,thus suggesting that SET8 potentiated radiotherapy of carcinomas.As new inhibitors of SET8 are synthesized and tested in preclinical and clinical settings,combining SET8 inhibitors with radiation warrants consideration for precise radiotherapy.展开更多
Pancreatic ductal adenocarcinoma(PDAC)is one of the most lethal neoplasms worldwide and represents the vast majority of pancreatic cancer cases.Understanding the molecular pathogenesis and the underlying mechanisms in...Pancreatic ductal adenocarcinoma(PDAC)is one of the most lethal neoplasms worldwide and represents the vast majority of pancreatic cancer cases.Understanding the molecular pathogenesis and the underlying mechanisms involved in the initiation,maintenance,and progression of PDAC is an urgent need,which may lead to the development of novel therapeutic strategies against this deadly cancer.Here,we review the role of SET and MYND domaincontaining protein 2(SMYD2)in initiating and maintaining PDAC development through methylating multiple tumor suppressors and oncogenic proteins.Given the broad substrate specificity of SMYD2 and its involvement in diverse oncogenic signaling pathways in many other cancers,the mechanistic extrapolation of SMYD2 from these cancers to PDAC may allow for developing new hypotheses about the mechanisms driving PDAC tumor growth and metastasis,supporting a proposition that targeting SMYD2 could be a powerful strategy for the prevention and treatment of PDAC.展开更多
Epigenetic therapies that cause genome-wide epigenetic alterations,could trigger local interplay between different histone marks,leading to a switch of transcriptional outcome and therapeutic responses of epigenetic t...Epigenetic therapies that cause genome-wide epigenetic alterations,could trigger local interplay between different histone marks,leading to a switch of transcriptional outcome and therapeutic responses of epigenetic treatment.However,in human cancers with diverse oncogenic activation,how oncogenic pathways cooperate with epigenetic modifiers to regulate the histone mark interplay is poorly understood.We herein discover that the hedgehog(Hh)pathway reprograms the histone methylation landscape in breast cancer,especially in triple-negative breast cancer(TNBC).This facilitates the histone acetylation caused by histone deacetylase(HDAC)inhibitors and gives rise to new therapeutic vulnerability of combination therapies.Specifically,overexpression of zinc finger protein of the cerebellum 1(ZIC1)in breast cancer promotes Hh activation,facilitating the switch of H3K27 methylation(H3K27me)to acetylation(H3K27ac).The mutually exclusive relationship of H3K27me and H3K27ac allows their functional interplay at oncogenic gene locus and switches therapeutic outcomes.Using multiple in vivo breast cancer models including patient-derived TNBC xenograft,we show that Hh signaling-orchestrated H3K27me and H3K27ac interplay tailors combination epigenetic drugs in treating breast cancer.Together,this study reveals the new role of Hh signaling-regulated histone modifications interplay in responding to HDAC inhibitors and suggests new epigenetically-targeted therapeutic solutions for treating TNBC.展开更多
Histone lysine methyltransferases(HKMTs)deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression.The structures and functions of HKMTs have ...Histone lysine methyltransferases(HKMTs)deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression.The structures and functions of HKMTs have been extensively investigated in recent decades,significantly advancing our understanding of the dynamic regulation of histone methylation.Here,we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes(H3K4,H3K27,H3K36,H3K79,and H4K20 methyltransferases),with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs.These structural studies inform HKMTs'roles in tumorigenesis and provide the foundations for developing new therapeutic approachestargetingHKMTs incancers.展开更多
Lysine-specific demethylase 1 (Lsdl) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsdl has not, however, been studied. H...Lysine-specific demethylase 1 (Lsdl) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsdl has not, however, been studied. Here, we describe the pattern of zebrafish Lsdl expression during different development stages. In the zebrafish embryo, Isdl mRNA was present during the early cleavage stage, indicating that maternally derived Lsdl protein is involved in embryonic patterning. During embryogenesis from 0 to 48 hours post-fertilization (hpf), the expression of Isdl mRNA in the embryo was ubiquitous before 12 hpf and then became restricted to the antedor of the embryo (particularly in the brain) from 24 hpf to 72 hpf. Inhibition of Lsdl activity (by exposure to tranylcypromine) or knockdown of Isdl expression (by morpholino antisense oligonucleotide injection) led to the loss of cells in the brain and to a dramatic downregulatJon of neural genes, including gad65, gad75, and reelin, but not hey1. These findings indicate an important role of Lsdl during nervous system development in zebrafish.展开更多
Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3 K4 methylation in Arabidopsis thaliana,it is unknown whether and how these histo...Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3 K4 methylation in Arabidopsis thaliana,it is unknown whether and how these histone methyltransferases affect DNA methylation.Here,we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation.The expression and H3 K4 me3 levels of both RNAdirected DNA methylation(RdDM)genes(NRPE1,DCL3,IDN2,and IDP2)and active DNA demethylation genes(ROS1,DML2,and DML3)were downregulated in the atx1/2/4/5 mutant.Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites,and that the RdDM pathway mediates DNA methylation mainly at CHH sites,whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3(rdd),and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1,suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3 K4 me3 levels and expression levels of both RdDM genes and active DNA demethylation genes.Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes,we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation.This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.展开更多
Functionality of adult peripheral nerves essentially relies on differentiation of Schwann cells during post- natal development, as well as fine-tuned re- and transdifferentiation in response to peripheral nerve injury...Functionality of adult peripheral nerves essentially relies on differentiation of Schwann cells during post- natal development, as well as fine-tuned re- and transdifferentiation in response to peripheral nerve injury. Epigenetic histone modifications play a major role during the differentiation of embryonic stem cells and diverse organ specific progenitor cells, yet only little is known about the epigenetic regulation of Schwa nn cells. Just recently, Fuhrmann et al. reported how the transcription factor Myc-interacting zinc-finger protein 1 (Mizl) might contribute to Schwann cell differentiation through repression of the histone de- methylase Kdm8. Here, we discuss the potential novel role of Mizl in Schwann cell differentiation and give a short overview about previously reported histone modifications underlying peripheral nerve develop- ment and response to injury.展开更多
文摘Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
基金supported by Hungarian National Research,Development and Innovation Office(NKFIH) grants K-112294GINOP-2.3.2-15-2016-00032 and GINOP-2.3.2-15-2016-00034 to LB
文摘Huntington’s disease(HD)is a currently incurable,late onset,progressive,ultimately fatal neurological disorder(Bates et al.,2015).We have recently published the results of comprehensive genetic interaction tests aimed at identification of histone methyltransferases and demethylases involved in HD pathogenesis in a Drosophila model of the disease(Song et al.,2018).
基金supported by grants from the National Natural Science Foundation of China(31970530,31930017,and 31671263).
文摘Cytokinins influence many aspects of plant growth and development.Although cytokinin biosynthesis and signaling have been well studied in planta,little is known about the regulatory effects of epigenetic modifications on the cytokinin response.Here,we reveal that mutations to Morf Related Gene(MRG)proteins MRG1/MRG2,which are readers of trimethylated histone H3 lysine 4 and lysine 36(H3K4me3 and H3K36me3),result in cytokinin hyposensitivity during various developmental processes,including callus induction and root and seedling growth inhibition.Similar to the mrg1 mrg2 mutant,plants with a defective AtTCP14,which belongs to the TEOSINTE BRANCHED,CYCLOIDEA,AND PROLIFERATING CELL FACTOR(TCP)transcription factor family,are insensitive to cytokinin.Furthermore,the transcription of several genes related to cytokinin signaling pathway is altered.Specifically,the expression of Arabidopsis thaliana HISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2(AHP2)decreases significantly in the mrg1 mrg2 and tcp14-2 mutants.We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo.Thus,MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression.In summary,our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.
基金National Natural Science Foundation of China,No.30271477,No.30572162
文摘AIM: To identify the relationship between DNA hyper- methylation and histone modification at a hyperme- thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification. METHODS: We used chromatin immunoprecipitation (CHIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and rnutL homolog 1 (MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylation- specific PCR (MSP) to evaluate the effect of 5-Aza-2'- deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status. We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression. RESULTS: For thep16 and MLH1 genes in two cell lines, silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation. Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza- dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected alter TSA treatment, andincreased moderately at the silenced loci after 5-Aza-dC treatment. CONCLUSION: Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely correlate with DNA methylation status of each gene in gastric cancer cells. Alteration of DNA methylation affects histone modification.
基金This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24020104 to Y.B.XDB27030201 to X.C.)+5 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(QYZDB-SSW-SMC021 to Y.B.QYZDY-SSW-SMC022 to X.C.)the National Natural Science Foundation of China(31788103 to X.C.31801945 to J.Z.)the Youth Innovation Promotion Association CAS(2020101 to J.Z.2021092 to Y.L.)。
文摘Plants have a close relationship with their root microbiota,which comprises a complex microbial network.Histone methylation is an important epigenetic modification influencing multiple plant traits;however,little is known about the role of plant histone methylation in the assembly and network structure of the root microbiota.In this study,we established that the rice(Oryza sativa)histone methylation regulates the structure and composition of the root microbiota,especially the hub species in the microbial network.DJjmj703(defective in histone H3K4 demethylation)and ZH11-sdg714(defective in H3K9 methylation)showed significant different root microbiota compared with the corresponding wild types at the phylum and family levels,with a consistent increase in the abundance of Betaproteobacteria and a decrease in the Firmicutes.In the root microbial network,35 of 44 hub species in the top 10 modules in the tested field were regulated by at least one histone methylation-related gene.These observations establish that the rice histone methylation plays a pivotal role in regulating the assembly of the root microbiota,providing insights into the links between plant epigenetic regulation and root microbiota.
基金supported by grants from Shanghai Key Clinical Specialty,Shanghai Eye Disease Research Center(Grant No.:2022Zz01003 to Xianqun Fan)the National Key Research and Development Plan(Grant No.:2018YFC1106100 to Xianqun Fan)+1 种基金the National Natural Science Foundation of China(Grant Nos.:12275178 to Shengfang Ge and 82103240 to Peiwei Chai)Innovative Research Team of High-level Local Universities in Shanghai(Grant Nos.:SHSMU-ZDCX20210902 to Renbing Jia and SHSMUZDCX20210900 to Xianqun Fan),the Science and Technology Commission of Shanghai(Grant No.:19JC1410200 to Xianqun Fan),and Cross-disciplinary Research Fund of Shanghai Ninth People's Hospital,Shanghai Jiao Tong university School of Medicine(Grant No.:JYJC202210 to Ai Zhuang).
文摘Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic.Herein,using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers,we observed that disruptor of telomeric silencing-1-like(DOT1L),a methyltransferase of histone H3 lysine 79(H3K79),was activated in UM,especially in the high-risk group.Concordantly,a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells,both in vitro and in vivo.Combining Cleavage Under Targets and Tagmentation(CUT&Tag),RNA sequencing(RNA-seq),and bioinformatics analysis,we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase(NAPRT)and epigenetically activated its expression.Importantly,NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide(NAD^(+))synthesis.Therapeutically,DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79(H3K79me2)in the NAPRT promoter,thereby inhibiting the malignant behaviors of UM.Conclusively,our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.
基金This work is in part supported by grants from the National Natural Science Foundation of China(Grant No.30725014 to X-J.W.and 30525040 to Q.Z.)grant from the Ministry of Science and Technology of China(No.2007CB946901 to X-J.W.).
文摘Embryonic stem(ES)cells distinct themselves from other cell type populations by their pluripotent ability.The unique features of ES cells are controlled by both genetic and epigenetic factors.Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells.Herein,we summarized recent advances in DNA and histone methylation studies of mammalian ES cells.The methylation status of several key pluripotent regulatory genes is also discussed.
文摘Histone methylation is an important epigenetic phenomenon that participates in a diverse array of cellular processes and has been found to be associated with cancer. Recent identification of several histone demethylases has proved that histone methylation is a reversible process. Through a candidate approach, we have biochemically identified JMJD3 as an H3K27 demethylase. Transfection of JMJD3 into HeLa cells caused a specific reduction oftrimethyl H3K27, but had no effect on di-and monomethyl H3K27, or histone lysine methylations on H3K4 and H3K9. The enzymatic activity requires the JmjC domain and the conserved histidine that has been suggested to be important for a cofactor binding. In vitro biochemical experiments demonstrated that JMJD3 directly catalyzes the demethylation. In addition, we found that JMJD3 is upregulated in prostate cancer, and its expression is higher in metastatic prostate cancer. Thus, we identified JMJD3 as a demethylase capable of removing the trimethyl group from histone H3 lysine 27 and upregulated in prostate cancer.
基金supported by the National Institute of Dental and Craniofacial Research grants, K08DE024603-02, DE019412, and DE01651a grant from 111 Project of MOE, Chinasupported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs.
文摘Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.
基金supported by the National Key Research and Development Program of China(2019YFA0802501)the National Natural Science Foundation of China(32270617,31971231)+1 种基金the Fundamental Research Funds for the Central Universities(2042022dx0003)the Application Fundamental Frontier Foundation of Wuhan(2020020601012225)。
文摘Histone H3 Lys36(H3K36)methylation and its associated modifiers are crucial for DNA double-strand break(DSB)repair,but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear.Here,we unveil the distinct roles of H3K36 dimethylation(H3K36me2)and H3K36 trimethylation(H3K36me3)in DSB repair via non-homologous end joining(NHEJ)or homologous recombination(HR).Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency.y Ku70 and Rfa1 bind H3K36me2-or H3K36me3-modified peptides and chromatin,respectively.Disrupting these interactions impairs y Ku70 and Rfa1 recruitment to damaged H3K36me2-or H3K36me3-rich loci,increasing DNA damage sensitivity and decreasing repair efficiency.Conversely,H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit y Ku70 or Rfa1 under DSB stress.Importantly,human KU70 and RPA1,the homologs of y Ku70 and Rfa1,exclusively associate with H3K36me2 and H3K36me3 in a conserved manner.These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways,highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
基金supported by National Science Foundation of China (Grant No. 81371136) to Xue-Dong ZhouNational Science Foundation of China (Grant No. 81200760 and 81470711) to Li-Wei Zheng
文摘Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4trimethylation(H3K4me3) and histone H3 lysine 27 trimethylation(H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5 B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction(qP CR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial–temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5 B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.
基金supported by the Ministry of Science and Technology of China(2015CB910402)to Jiemin Wongthe National Natural Science Foundation of China(91419303)+1 种基金The Science and Technology Commission of Shanghai Municipality(14XD1401700,11DZ2260300)the National Science&Technology Major Project“Key New Drug Creation and Manufacturing Program”of China(2014ZX09507002-002)
文摘Histone methylation is believed to provide binding sites for specific reader proteins, which translate histone code into biological function. Here we show that a family of acidic domain-containing proteins including nucleophosmin (NPM 1), pp32, SET/TAF 113, nucleolin (NCL) and upstream binding factor (UBF) are novel H3K4me2-binding proteins. These proteins exhibit a unique pattern of interaction with methylated H3K4, as their binding is stimulated by H3K4me2 and inhibited by H3K4mel and H3K4me3. These proteins contain one or more acidic domains consisting mainly of aspartic and/or glutamic residues that are necessary for preferential binding of H3K4me2. Furthermore, we demonstrate that the acidic domain with sufficient length alone is capable of binding H3K4me2 in vitro and in vivo. NPM1, NCL and UBF require their acidic domains for association with and transcriptional activation ofrDNA genes. Interestingly, by defining acidic domain as a sequence with at least 20 acidic residues in 50 continuous amino acids, we identified 655 acidic domain-containing protein coding genes in the human genome and Gene Ontology (GO) analysis showed that many of the acidic domain proteins have chromatin-related functions. Our data suggest that acidic domain is a novel histone binding motif that can differentially read the status of H3K4 methylation and is broadly present in chromatin-associated proteins.
基金supported by the National Natural Science Foundation of China[U1432121,11635013,11705248]。
文摘Objective SET8 is a member of the SET domain-containing family and the only known lysine methyltransferase(KMT)that monomethylates lysine 20 of histone H4(H4 K20 me1).SET8 has been implicated in many essential cellular processes,including cell cycle regulation,DNA replication,DNA damage response,and carcinogenesis.There is no conclusive evidence,however,regarding the effect of SET8 on radiotherapy.In the current study we determined the efficacy of SET8 inhibition on radiotherapy of tumors and the underlying mechanism.Methods First,we explored the radiotherapy benefit of the SET8 expression signature by analyzing clinical data.Then,we measured a series of biological endpoints,including the xenograft tumor growth in mice and apoptosis,frequency of micronuclei,and foci of 53 BP1 andγ-H2 AX in cells to detect the SET8 effects on radiosensitivity.RNA sequencing and subsequent experiments were exploited to verify the mechanism underlying the SET8 effects on radiotherapy.Results Low expression of SET8 predicted a better benefit to radiotherapy in lung adenocarcinoma(LUAD)and invasive breast carcinoma(BRCA)patients.Furthermore,genetic deletion of SET8 significantly enhanced radiation treatment efficacy in a murine tumor model,and A549 and MCF7 cells;SET8 overexpression decreased the radiosensitivity.SET8 inhibition induced more apoptosis,the frequency of micronuclei,and blocked the kinetics process of DNA damage repair as 53 BP1 andγ-H2 AX foci remained in cells.Moreover,RNF8 was positively correlated with the SET8 impact on DNA damage repair.Conclusion Our results demonstrated that SET8 inhibition enhanced radiosensitivity by suppressing DNA damage repair,thus suggesting that SET8 potentiated radiotherapy of carcinomas.As new inhibitors of SET8 are synthesized and tested in preclinical and clinical settings,combining SET8 inhibitors with radiation warrants consideration for precise radiotherapy.
文摘Pancreatic ductal adenocarcinoma(PDAC)is one of the most lethal neoplasms worldwide and represents the vast majority of pancreatic cancer cases.Understanding the molecular pathogenesis and the underlying mechanisms involved in the initiation,maintenance,and progression of PDAC is an urgent need,which may lead to the development of novel therapeutic strategies against this deadly cancer.Here,we review the role of SET and MYND domaincontaining protein 2(SMYD2)in initiating and maintaining PDAC development through methylating multiple tumor suppressors and oncogenic proteins.Given the broad substrate specificity of SMYD2 and its involvement in diverse oncogenic signaling pathways in many other cancers,the mechanistic extrapolation of SMYD2 from these cancers to PDAC may allow for developing new hypotheses about the mechanisms driving PDAC tumor growth and metastasis,supporting a proposition that targeting SMYD2 could be a powerful strategy for the prevention and treatment of PDAC.
基金supported by the National Natural Science Foundation of China(Nos.82225046,81821005,and 81903640)the Program of Shanghai Academic Research Leader(20XD1424800,China)。
文摘Epigenetic therapies that cause genome-wide epigenetic alterations,could trigger local interplay between different histone marks,leading to a switch of transcriptional outcome and therapeutic responses of epigenetic treatment.However,in human cancers with diverse oncogenic activation,how oncogenic pathways cooperate with epigenetic modifiers to regulate the histone mark interplay is poorly understood.We herein discover that the hedgehog(Hh)pathway reprograms the histone methylation landscape in breast cancer,especially in triple-negative breast cancer(TNBC).This facilitates the histone acetylation caused by histone deacetylase(HDAC)inhibitors and gives rise to new therapeutic vulnerability of combination therapies.Specifically,overexpression of zinc finger protein of the cerebellum 1(ZIC1)in breast cancer promotes Hh activation,facilitating the switch of H3K27 methylation(H3K27me)to acetylation(H3K27ac).The mutually exclusive relationship of H3K27me and H3K27ac allows their functional interplay at oncogenic gene locus and switches therapeutic outcomes.Using multiple in vivo breast cancer models including patient-derived TNBC xenograft,we show that Hh signaling-orchestrated H3K27me and H3K27ac interplay tailors combination epigenetic drugs in treating breast cancer.Together,this study reveals the new role of Hh signaling-regulated histone modifications interplay in responding to HDAC inhibitors and suggests new epigenetically-targeted therapeutic solutions for treating TNBC.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37010303 to Y.C.)the National Natural Science Foundation of China(31670748,31970576 to Y.C.,and 32071195 and 31900934 to Y.L.)+1 种基金the Young Elite Scientist Sponsorship Program by Chinese Association for Science and Technology(YESS20170198 to Y.L.)the National Postdoctoral Program for Innovative Talents(Bx201700263 to Y.L.).
文摘Histone lysine methyltransferases(HKMTs)deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression.The structures and functions of HKMTs have been extensively investigated in recent decades,significantly advancing our understanding of the dynamic regulation of histone methylation.Here,we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes(H3K4,H3K27,H3K36,H3K79,and H4K20 methyltransferases),with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs.These structural studies inform HKMTs'roles in tumorigenesis and provide the foundations for developing new therapeutic approachestargetingHKMTs incancers.
基金the National Natural Science Foundation of China, No.81102643the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, No.10KJB310010+1 种基金the Science Foundationof Zhejiang Province, No.Y2100917the Science Foundation of Anhui Province, No.1208085MB26
文摘Lysine-specific demethylase 1 (Lsdl) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsdl has not, however, been studied. Here, we describe the pattern of zebrafish Lsdl expression during different development stages. In the zebrafish embryo, Isdl mRNA was present during the early cleavage stage, indicating that maternally derived Lsdl protein is involved in embryonic patterning. During embryogenesis from 0 to 48 hours post-fertilization (hpf), the expression of Isdl mRNA in the embryo was ubiquitous before 12 hpf and then became restricted to the antedor of the embryo (particularly in the brain) from 24 hpf to 72 hpf. Inhibition of Lsdl activity (by exposure to tranylcypromine) or knockdown of Isdl expression (by morpholino antisense oligonucleotide injection) led to the loss of cells in the brain and to a dramatic downregulatJon of neural genes, including gad65, gad75, and reelin, but not hey1. These findings indicate an important role of Lsdl during nervous system development in zebrafish.
基金the National Natural Science Foundation of China(32025003)by the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology。
文摘Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3 K4 methylation in Arabidopsis thaliana,it is unknown whether and how these histone methyltransferases affect DNA methylation.Here,we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation.The expression and H3 K4 me3 levels of both RNAdirected DNA methylation(RdDM)genes(NRPE1,DCL3,IDN2,and IDP2)and active DNA demethylation genes(ROS1,DML2,and DML3)were downregulated in the atx1/2/4/5 mutant.Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites,and that the RdDM pathway mediates DNA methylation mainly at CHH sites,whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3(rdd),and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1,suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3 K4 me3 levels and expression levels of both RdDM genes and active DNA demethylation genes.Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes,we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation.This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
基金supported by Deutsche Forschungsgemeinschaft(DFG grant EL125/6-1)
文摘Functionality of adult peripheral nerves essentially relies on differentiation of Schwann cells during post- natal development, as well as fine-tuned re- and transdifferentiation in response to peripheral nerve injury. Epigenetic histone modifications play a major role during the differentiation of embryonic stem cells and diverse organ specific progenitor cells, yet only little is known about the epigenetic regulation of Schwa nn cells. Just recently, Fuhrmann et al. reported how the transcription factor Myc-interacting zinc-finger protein 1 (Mizl) might contribute to Schwann cell differentiation through repression of the histone de- methylase Kdm8. Here, we discuss the potential novel role of Mizl in Schwann cell differentiation and give a short overview about previously reported histone modifications underlying peripheral nerve develop- ment and response to injury.