In this paper,a multistep finite difference scheme has been proposed,whose coefficients are determined taking into consideration compatibility and generalized quadratic conservation,as well as incorporating historical...In this paper,a multistep finite difference scheme has been proposed,whose coefficients are determined taking into consideration compatibility and generalized quadratic conservation,as well as incorporating historical observation data.The schemes have three advantages:high-order accuracy in time,generalized square conservation,and smart use of historical observations.Numerical tests based on the one-dimensional linear advection equations suggest that reasonable consideration of accuracy,square conservation,and inclusion of historical observations is critical for good performance of a finite difference scheme.展开更多
1. IntroductionHistoric instrumental weather observations, made on land or at sea from as early as the 17th century (e.g.,Camuffo et al.,2010),are integral to extending our understanding of the decadal and centennia...1. IntroductionHistoric instrumental weather observations, made on land or at sea from as early as the 17th century (e.g.,Camuffo et al.,2010),are integral to extending our understanding of the decadal and centennial variations of Earth's climate and for comparison with paleo-proxy data.展开更多
In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of squa...In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.展开更多
基金the Ministry of Science and Technology of China for funding the National Basic Research Program of China (973 Program,Grant No.2011CB309704)
文摘In this paper,a multistep finite difference scheme has been proposed,whose coefficients are determined taking into consideration compatibility and generalized quadratic conservation,as well as incorporating historical observation data.The schemes have three advantages:high-order accuracy in time,generalized square conservation,and smart use of historical observations.Numerical tests based on the one-dimensional linear advection equations suggest that reasonable consideration of accuracy,square conservation,and inclusion of historical observations is critical for good performance of a finite difference scheme.
基金the ongoing support of CSSP China under the BEIS UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fundsupported by funding from the EU Copernicus Climate Change Service(C3S)
文摘1. IntroductionHistoric instrumental weather observations, made on land or at sea from as early as the 17th century (e.g.,Camuffo et al.,2010),are integral to extending our understanding of the decadal and centennial variations of Earth's climate and for comparison with paleo-proxy data.
基金the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program,Grant No.2011CB309704)
文摘In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.