期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Correcting the initialization of models with fractional derivatives via history-dependent conditions 被引量:1
1
作者 Maolin Du Zaihua Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期320-325,共6页
Fractional differential equations are more and more used in modeling memory(history-dependent,nonlocal,or hereditary) phenomena.Conventional initial values of fractional differential equations are define at a point,... Fractional differential equations are more and more used in modeling memory(history-dependent,nonlocal,or hereditary) phenomena.Conventional initial values of fractional differential equations are define at a point,while recent works defin initial conditions over histories.We prove that the conventional initialization of fractional differential equations with a Riemann–Liouville derivative is wrong with a simple counter-example.The initial values were assumed to be arbitrarily given for a typical fractional differential equation,but we fin one of these values can only be zero.We show that fractional differential equations are of infinit dimensions,and the initial conditions,initial histories,are define as functions over intervals.We obtain the equivalent integral equation for Caputo case.With a simple fractional model of materials,we illustrate that the recovery behavior is correct with the initial creep history,but is wrong with initial values at the starting point of the recovery.We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically. 展开更多
关键词 Fractional derivative Differential equation Initial value Initial history
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部