To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated wit...In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.展开更多
Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for...Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and展开更多
A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session proces...A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.展开更多
Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Du...Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Due to the insecure nature of the wireless link and their dynamically changing topology, wireless ad-hoc networks require a careful and security-oriented approach for designing routing protocols. In this paper, an AODV-based secure routing protocol- ENAODV is presented. A speed-optimized digital signature algorithm is integrated into the routing protocol. The protocol algorithm is implemented with NS-2. The security of the protocol is analyzed. The simulating results show that the performances of ENAODV protocol, such as average node energy consumption, packet delay and packet delivery is nearly the same as standard AODV protocol.展开更多
Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments ...Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.展开更多
Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy ...Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.展开更多
Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem...Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem, this paper proposes a new trusted routing protocol in VANET based on GeoDTN+Nav by using trust management model of Bayesian and the three opportunistic routing forwarding models, which includes four steps of the routing initialization, the routing discovery, the trusted routing establishment and the routing deletion. The proposed protocol not only improves the security of routing, but also has the lower time complexity. Besides, experimental results and analysis show that the protocol has achieved good performance in the removal ratio of malicious nodes, correct reception ratio of packet and the message payload.展开更多
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金supported by Zhejiang Provincial Key Laboratory of Communication Networks and Applications and National Natural Science Foundation of China under Grant No.60872020
文摘In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.
基金Supported in part by 863-2002AA103011-5, Shanghai Municipal R&D Foundation (No.035107008), and LG-KAIST-FUDAN International Cooperation Project.
文摘Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and
文摘A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.
基金This work was supported by China Nature Science Fund .Serial No.60073059and60273078
文摘Ad-hoc networking has mainly been associated with military battlefield networks. Security has received considerably less attention and the issue needs to be addressed before any successful applications will appear. Due to the insecure nature of the wireless link and their dynamically changing topology, wireless ad-hoc networks require a careful and security-oriented approach for designing routing protocols. In this paper, an AODV-based secure routing protocol- ENAODV is presented. A speed-optimized digital signature algorithm is integrated into the routing protocol. The protocol algorithm is implemented with NS-2. The security of the protocol is analyzed. The simulating results show that the performances of ENAODV protocol, such as average node energy consumption, packet delay and packet delivery is nearly the same as standard AODV protocol.
文摘Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.
基金Project supported by the Development Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012)the Shanghai Leading Academic Discipline Project (Grant No.T0102)the Shanghai Fiber Optics Leading Lab (Grant No.SKLSF0200505)
文摘Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.
文摘Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem, this paper proposes a new trusted routing protocol in VANET based on GeoDTN+Nav by using trust management model of Bayesian and the three opportunistic routing forwarding models, which includes four steps of the routing initialization, the routing discovery, the trusted routing establishment and the routing deletion. The proposed protocol not only improves the security of routing, but also has the lower time complexity. Besides, experimental results and analysis show that the protocol has achieved good performance in the removal ratio of malicious nodes, correct reception ratio of packet and the message payload.