This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the To...This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.展开更多
In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive fi...In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.展开更多
文摘This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.
基金co-supported by the National Natural Science Foundation of China(No.41874034)the National key research and development program of China(No.2016YFB0502102)+1 种基金the Beijing Natural Science Foundation(No.4202041)the Aeronautical Science Foundation of China(No.2016ZC51024)。
文摘In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.