In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds...Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds, which can be produced with diverse microstructural features, are now widely used in glass molding owing to their excellent characteristics, and also have potential applicability in IT industries. SiC molds are traditionally fabricated by silicon micromachining or dicing. The fabrication cost of silicon micromachining is very high, however, because several expensive masks are needed. Furthermore, the fabrication time is very long. Meanwhile, it is difficult to make micro-patterned molds with arbitrary shapes using dicing saws. Abrasive water jet (AWJ) is widely applied to cut and drill very brittle, soft and fibrous materials. It offers high energy density, the absence of a heat affected zone(HAZ), high performance, and an environment friendly process. In spite of these advantages, micro-hole drilling via conventional AWJ processing suffers from notable shortcomings. We proposed a new abrasive supplying method of AWJ. The proposed method reduces frosting phenomena, and provides micro-machining of AWJ. The characteristics of a hole machined was investigated by the proposed AWJ process according to the ratio of water and abrasives. With the optimal experimental conditions, 3×3 array SiC molds with the diameter of 700 μm and depth of 900 μm were successfully manufactured.展开更多
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.
基金supported by a grant-in-aid for the National Core Research Center Program from the Ministry of Education Science & Technologythe Korea Science & Engineering Foundation (No.R15-2006-022-01001)
文摘Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds, which can be produced with diverse microstructural features, are now widely used in glass molding owing to their excellent characteristics, and also have potential applicability in IT industries. SiC molds are traditionally fabricated by silicon micromachining or dicing. The fabrication cost of silicon micromachining is very high, however, because several expensive masks are needed. Furthermore, the fabrication time is very long. Meanwhile, it is difficult to make micro-patterned molds with arbitrary shapes using dicing saws. Abrasive water jet (AWJ) is widely applied to cut and drill very brittle, soft and fibrous materials. It offers high energy density, the absence of a heat affected zone(HAZ), high performance, and an environment friendly process. In spite of these advantages, micro-hole drilling via conventional AWJ processing suffers from notable shortcomings. We proposed a new abrasive supplying method of AWJ. The proposed method reduces frosting phenomena, and provides micro-machining of AWJ. The characteristics of a hole machined was investigated by the proposed AWJ process according to the ratio of water and abrasives. With the optimal experimental conditions, 3×3 array SiC molds with the diameter of 700 μm and depth of 900 μm were successfully manufactured.