Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calib...Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.展开更多
The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental ...The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.展开更多
This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude...This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.展开更多
Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and ...Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.展开更多
Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several p...Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several prominent mechanical release methods for residual stress measurement and recent developments, focusing on the hole-drilling method combined with advanced optical sensing. Some promising trends for mechanical release methods are also analyzed.展开更多
For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in res...For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in residual stress distribution characteristics of electron beam welding joints,which thickness is 50 mm,were measured using blind-hole method with local layer-by-layer removal.Effect of post-welding heat treatment on the residual stress distribution also studied.The results show that blind-hole method with local layer-by-layer removal is suitable to measure residual stresses in thick plate,and good to reflect the welded residual stress distribution of large gradient.Residual stress of the test samples in the weld and heat affected zone has high stress level,and internal stress dramatic changes with thickness in this areas.After heat treatment,the samples' stress distributions were significantly reduced.The samples' transverse and longitudinal residual stress are basically the same.Homogenization is obvious.展开更多
基金supported by the Natural Science Foundation of Fujian Provinceof China(No.2018J01082)the China Scholarship Council(No.201806315006)the National Natural Science Foundation of China(No.51305371)
文摘Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.
基金supported by the National Natural Science Foundation of China (no. 51478120)
文摘The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.
文摘This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.
基金supported by the National Natural Science Foundation of China(91216301,11072033,11232008,and 11372037)the Program for New Century Excellent Talents in University(NCET-12-0036)the Natural Science Foundation of Beijing,China(3122027)
文摘Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.
基金the financial support from the National Basic Research Program of China(Project‘973’)(Nos.2010CB631005 and 2011CB606105)the National Natural Science Foundation of China(Nos.91216301,11172151,11232008,11072033 and 11372037)+1 种基金Tsinghua University Initiative Scientific Research Program,Program for New Century Excellent Talents in University(grant No.NCET-12-0036)Natural Science Foundation of Beijing,China(grant No.3122027)
文摘Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several prominent mechanical release methods for residual stress measurement and recent developments, focusing on the hole-drilling method combined with advanced optical sensing. Some promising trends for mechanical release methods are also analyzed.
文摘For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in residual stress distribution characteristics of electron beam welding joints,which thickness is 50 mm,were measured using blind-hole method with local layer-by-layer removal.Effect of post-welding heat treatment on the residual stress distribution also studied.The results show that blind-hole method with local layer-by-layer removal is suitable to measure residual stresses in thick plate,and good to reflect the welded residual stress distribution of large gradient.Residual stress of the test samples in the weld and heat affected zone has high stress level,and internal stress dramatic changes with thickness in this areas.After heat treatment,the samples' stress distributions were significantly reduced.The samples' transverse and longitudinal residual stress are basically the same.Homogenization is obvious.